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We study the boundedness of singular Calderón–Zygmund type operators in the spaces Lp(·)(Ω, ρ) over a
bounded open set in R

n with the weight ρ(x) =
Qm

k=1 wk(|x − xk|), xk ∈ Ω, where wk has the property

that r
n

p(xk) wk(r) ∈ Φ0
n, where Φ0

n is a certain Zygmund-type class. The boundedness of the singular Cauchy
integral operator SΓ along a Carleson curve Γ is also considered in the spaces Lp(·)(Γ, ρ) with similar weights.

The weight functions wk may oscillate between two power functions with different exponents. It is assumed
that the exponent p(·) satisfies the Dini–Lipschitz condition. The final statement on the boundedness is given in
terms of the index numbers of the functions wk (similar in a sense to the Boyd indices for the Young functions
defining Orlicz spaces).

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Nowadays there is an evident increase of interest to harmonic analysis problems and operator theory in the
generalized Lebesgue spaces with variable exponent p(x) and the corresponding Sobolev spaces, we refer, in
particular to surveys [10], [16], [19], [35], and to [25] and [38], for the basics on the spaces Lp(·).

For the boundedness results of maximal operators we refer to [7] for bounded domains in Rn, to [6] and [31]
for unbounded domains, and to [23] for weighted boundedness on bounded domains.

We refer also to [5] and [8] where there are also given new insights into the problems of boundedness of
singular and maximal operators in variable exponent spaces.

In [23] the maximal operator with power weights ρ(x) =
∏m

k=1 |x − xk|αk with − n
p(xk) < αk < n

q(xk) was
considered (under the usual log-condition on p(x)).

Recently, in [21] we proved the weighted boundedness of the maximal operator in the spaces Lp(·)(Ω, ρ) for a
certain class of non-power weights,

ρ(x) =
m∏

k=1

wk(|x − xk|)), xk ∈ Ω, (1.1)

which are still “fixed” to a finite number of points xk ∈ Ω (radial type weights of the Zygmund–Bary–Stechkin
class).

The problem of more general weights remains open. An explicit description of weights for which the maximal
operator is bounded in the spaces Lp(·) is a challenging problem. The most progress in that direction was done in
[8].
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Boundedness of singular operators with standard kernels in the spaces Lp(·)(Rn) was proved in [11] and [12].
We refer also to [13] and [14] where the results from [11] and [12] were extended to Calderón–Zygmund

singular operators related to the half space R
n+1
+ .

Statements on weighted boundedness of Calderón–Zygmund type singular operators with power weights were
given in [22]. We refer also for similar results for the Cauchy singular integral on Carleson curves obtained in
[20] and [24].

In this paper we prove a theorem on boundedness of Calderón–Zygmund type singular operators over bounded
domains in Rn with weight (1.1) basing ourselves on the weighted result for the maximal function obtained in
[21]. A similar statement for the Cauchy singular operator on Carleson curves is also given.

The main results are given in Theorems 3.6, 3.7 and 4.3.

Notation Throughout the paper we denote by:

• B(x, r) = {y ∈ R
n : |y − x| < r};

• |B(x, r)| the volume of B(x, r);
• C, c different positive constants;

• Ω an open set in Rn;

• |Ω| the Lebesgue measure of Ω;

• χΩ the characteristic function of a set Ω;

• p′(x) = p(x)
p(x)−1 , 1 < p(x) < ∞;

• p− = infx∈Ω p(x), p+ = supx∈Ω p(x);

• W̃ = W̃ ([0, �]) as defined in (2.11);

• Φγ
0 , as defined in Definition 2.4.

2 Preliminaries

2.1 On maximal function in weighted Lebesgue generalized spaces

Let Ω be an open set in R
n, n ≥ 1, and let p(x) be a function on Ω with values in [1,∞). By

MΩf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)∩Ω

|f(y)| dy, x ∈ R
n, (2.1)

we denote the maximal operator. We write M = MRn in the case where Ω = Rn.
We use the following notation for classes of the exponents p(x) related to the boundedness of the maximal

operator:

P(Ω) = {p(x) : 1 < p− ≤ p− < ∞}, p+ = inf
x∈Ω

p(x), p+ = sup
x∈Ω

p(x).

P(Ω) ⊂ P(Ω) is the class of functions in P(Ω) for which the maximal operator is bounded in the space
Lp(·)(Ω).

Plog(Ω) will stand for the class of exponents p ∈ P(Ω) which satisfy the log-condition

|p(x) − p(y)| ≤ A

ln 1
|x−y|

, |x − y| ≤ 1
2
, x, y ∈ Ω. (2.2)

As is known ([7]), Plog(Ω) ⊂ P(Ω) in case of a bounded domain Ω.
By Lp(·)(Ω, ρ) we denote the weighted Banach space of all measurable functions f : Ω → C such that

‖f‖Lp(·)(Ω,ρ) := ‖ρf‖p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣ρ(x)f(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
< ∞. (2.3)

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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A weight function ρ is said to be in the class Ap(·)(Ω) if the maximal operator MΩ is bounded in the weighted
spaces Lp(·)(Ω, ρ).

Obviously,

p ∈ P ∩ {p : 1 ∈ Ap(·)} ⇐⇒ p ∈ P .

Lemma 2.1 Let ρ ∈ Ap(Ω). Then ρs ∈ A p(·)
s

(Ω) for any s ∈ (0, 1].

P r o o f. We follow the known arguments, see [9, p. 43]. We have

MΩ(|f |s)(x) ≤ [MΩf(x)]s, 0 < s < 1, (2.4)

which is obtained by the Hölder inequality, and

‖f‖p(·) = ‖fs‖ 1
s
p(·)

s

for any s ∈ (0, 1]. (2.5)

Then by (2.4) and (2.5) we obtain

‖ρsMΩf‖ p(·)
s

=
∥∥ρ(MΩf)

1
s

∥∥s

p(·) ≤
∥∥ρ

(MΩf
1
s

)∥∥s

p(·) ≤ C
∥∥ρf

1
s

∥∥s

p(·) = C ‖ρsf‖p(·). (2.6)

In [22] there was proved that when p ∈ Plog(Ω) and Ω is bounded, the power weights

ρ(x) =
m∏

k=1

|x − xk|αk , xk ∈ Ω,

are in Ap(·) if and only if

− n

p(xk)
< αk <

n

p′(xk)
. (2.7)

In [21] this was generalized to the case of oscillating weights of the form

ρ(x) =
m∏

k=1

wk(|x − xk|), xk ∈ Ω, (2.8)

where the weight functions wk(r) have the property that r
n

p(xk) wk(r) ∈ Φ0
n, where Φ0

n is a certain Zygmund–
Bari–Stechkin class. For weights of form (2.8), in [21] there was obtained a sufficient condition for such weights
to belong to Ap(·)(Ω). It was given in terms of the upper and lower indices mwk

and Mwk
(of the type of the Boyd

indices) of the weight functions wk(r); see definitions of the indices mwk
and Mwk

in Subsection 2.3. Weights
w in this class are almost increasing or almost decreasing and may oscillate between two power functions with
different exponents and have non-coinciding upper and lower indices mw and Mw. Namely, in [21] the following
theorem was proved.

Theorem 2.2 Let Ω be a bounded open set in Rn and p ∈ Plog(Ω). The operator M is bounded in the space
Lp(·)(Ω, ρ) with weight (2.8), if

r
n

p(xk) wk(r) ∈ Φ0
n, (2.9)

and

− n

p(xk)
< mwk

≤ Mwk
<

n

p′(xk)
, k = 1, 2, . . . , m. (2.10)

Remark 2.3 Condition (2.9) may be replaced by wk ∈ W̃ , where the class W̃ is defined in (2.11), because
condition (2.9) for wk ∈ W̃ coincides with condition (2.10) according to statement (2.12) of Theorem 2.5. Note
also that condition (2.9) is equivalent to the condition r

n
p′(xk) 1

wk(r) ∈ Φ0
n in view of property (2.17).

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.2 Examples of weights

Following [32], we observe that besides the trivial examples of non-power weights

wk(r) = rλk
(
ln C

r

)α
, wk(r) = rλk

(
ln ln C

r

)α
, etc.,

where − n
p(xk) < λk < n

p′(xk) , the weight functions

wk(r) = r
λk+ c

lnαk 1
r ,

where λk is the same and αk ≥ 1, are also examples of weights admissible for Theorem 2.2. More generally, one
may take wk(r) = rγk(r) where γk(r) satisfies the the Dini condition

|γk(r + h) − γk(r)| = o
(

1
| ln |h||

)
and γk(0) ∈

(
− n

p(xk) ,
n

p′(xk)

)
.

The last example may be also generalized in the following way: if the weight function wk(r) fulfills the
condition

lim
h→0

wk(rh)
wk(h)

= rγk , γk = constant,

then it is admissible for Theorem 2.2, if γk ∈
(
− n

p(xk) ,
n

p′(xk)

)
.

However, all the above examples have coinciding indices mwk
= Mwk

(see their definition in the next subsec-
tion). Examples of oscillating weights with non-coinciding indices mwk

, Mwk
are more complicated. We refer

for such examples to [34].

2.3 Index numbers mw and Mw and Bary–Stechkin–Zygmund class Φγ
0

Let W = {w ∈ C([0, �]) : w(0) = 0, w(x) > 0 for x > 0, w(x) is almost increasing}, where 0 < � < ∞. (In
the sequel, � = diamΩ in case Ω is bounded).

Following [32]–[34], we introduce the notation

mw = sup
x>1

ln
(

lim inf
h→0

w(hx)
w(h)

)
ln x

= sup
0<x<1

ln
(

lim sup
h→0

w(hx)
w(h)

)
ln x

= lim
x→0

ln
(

lim sup
h→0

w(hx)
w(h)

)
ln x

and

Mw = sup
x>1

ln
(

lim sup
h→0

w(hx)
w(h)

)
ln x

= lim
x→∞

ln
(

lim sup
h→0

w(hx)
w(h)

)
ln x

.

The numbers mω and Mω are known as the lower and upper indices of the function w(x) (compare these indices
with the Matuszewska–Orlicz indices, see [28, p. 20]; they are of the type of the Boyd indices, see [26, p. 75],
[27], or [3, p. 149] about the Boyd indices). We have 0 ≤ mw ≤ Mw ≤ ∞ for w ∈ W .

The upper and lower indices may be also well-defined for functions w(x) positive for x > 0 which do not
necessarily belong to W , for example, if wa(x) := xaw(x) is in W , but w(x) is not, then the indices mwa and
Mwa of wa(x) are well-defined and there also exist the indices mw and Mw of w(x) and mwa = a + mw,
Mwa = a + Mw in this case.

By this reason we introduce also the following class of functions, which may have negative indices mw and
Mw:

W̃ =
{
w : taw(t) ∈ W for some a ∈ R

1
}
. (2.11)

Let γ > 0. The following class Φ0
γ was introduced and studied in [2] (with integer γ); there are also known

“two-parametrical” classes Φβ
γ , 0 ≤ β < γ < ∞, see [29], [30], [36, p. 253] and [37]. Observe that in [39]

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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and [40] there were considered more general classes Φa(x)
b(x) with limits which may “oscillate”; the class Φ0

γ

corresponds to the case where a(x) = x0 = 1 and b(x) = xγ .

Definition 2.4 ([2]) The Zygmund–Bary–Stechkin type class Φ0
γ , 0 < γ < ∞, is defined as Φβ

γ := Z0 ∩ Zγ ,
where Z0 is the class of functions w ∈ W satisfying the condition∫ h

0

w(x)
x

dx ≤ cw(h)
(
Z

0
)

and Zγ is the class of functions w ∈ W satisfying the condition∫ �

h

w(x)
x1+γ

dx ≤ c
w(h)
hγ

,
(
Zγ

)
where c = c(w) > 0 does not depend on h ∈ (0, �].

In the sequel we refer to the above conditions as
(
Z0

)
- and

(
Zγ

)
-conditions.

The following statement is valid, see [32] and [34] for γ = 1 and [18] for an arbitrary γ > 0.

Theorem 2.5 A function w ∈ W belongs to Z0 if and only if mw > 0 and it belongs to Zγ , γ > 0, if and
only if Mw < γ, so that

w ∈ Φ0
γ ⇐⇒ 0 < mw ≤ Mw < γ. (2.12)

Besides this, for w ∈ Φ0
γ and any ε > 0 there exist constants c1 = c1(ε) > 0 and c2 = c2(ε) > 0 such that

c1t
Mw+ε ≤ w(t) ≤ c2t

mw−ε, 0 ≤ t ≤ �. (2.13)

The following properties are also valid

mw = sup
{
λ ∈ (0, 1) : t−λw(t) is almost increaing

}
, (2.14)

Mw = inf
{
µ ∈ (0, 1) : t−µw(t) is almost decreasing

}
. (2.15)

Remark 2.6 Observe that

m 1
w

= −Mω and M 1
w

= −mω. (2.16)

Therefore, as a corollary of (2.12) we have

w(t) ∈ Φ0
γ ⇐⇒ tγ

w(t)
∈ Φ0

γ . (2.17)

Remark 2.7 Functions w ∈ Zγ , γ > 0, satisfy the doubling condition

w(2r) ≤ Cw(r), 0 ≤ r ≤ �, (2.18)

which follows from the fact that the function w(r)
rµ is almost decreasing for every µ > Mw according to (2.15)

(observe that Mw is finite since Mω < γ by Theorem 2.5).

3 Weighted boundedness of Calderón–Zygmund type singular operators

We consider Calderón–Zygmund type operators

Tf(x) = lim
ε→0

∫
|x−y|>ε

k(x, y)f(y) dy. (3.1)

We suppose that the kernel k(x, y) is standard in the well-known sense ([4], [15, p. 99] and [17]), that is, satisfies
the assumptions:

www.mn-journal.com c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1150 Kokilashvili, N. Samko, and S. Samko: Singular operators in variable spaces

i) |k(x, y)| ≤ A |x − y|−n; (3.2)

ii)

|k(x, y) − k(z, y| ≤ A
|x − z|δ

|x − y|δ+n
, |k(y, x) − k(y, z| ≤ A

|x − y|δ
|x − y|δ+n

, (3.3)

for all |x− z| ≤ 1
2 |x− y| with some A > 0 and δ > 0. It is known that any such operator, if bounded in L2(Rn),

is also bounded in any space Lp(Rn), 1 < p < ∞, p = constant, see [4].

3.1 Preliminaries

[12, Theorem 4.8] on the boundedness of singular operators with standard kernels in the spaces Lp(·)(Rn) runs
as follows.

Theorem 3.1 Let k(x, y) be a standard kernel and let the operator T be of weak (1, 1)-type. If p ∈ P(Rn),
then the operator T is bounded in the space Lp(·)(Rn).

Theorem 3.1 was formulated in [11] and [12] under the assumption that p ∈ P(Rn) and that there exists an
s ∈ (0, 1) such that

(
p
s

)′ ∈ P . From the later result p ∈ P(Rn) ⇐⇒ p′ ∈ P(Rn) (see [8, Theorem 8.1]) and
the simple fact that p ∈ P(Rn) =⇒ p

s ∈ P(Rn) for s ∈ (0, 1), see (2.6), it follows that it suffices to assume only
that p ∈ P(Rn) .

With reference to the known results for unbounded domains in [6] we have also the following corollary.

Corollary 3.2 Let k(x, y) be a standard kernel. The Calderón–Zygmund-type singular operator

TΩf(x) = lim
ε→0

∫
y∈Ω:|y−x|>ε

k(x, y)f(y) dy (3.4)

of weak (1, 1)-type in Ω, is bounded in the space Lp(·)(Ω), if p is in Plog , when Ω is bounded, and satisfies also
the condition

|p(x) − p(∞)| ≤ A∞
ln(e + |x|) , x ∈ Ω, (3.5)

when Ω is unbounded.

We give a weighted version of Theorem 3.1 in Subsection 3.2, see Theorem 3.6 and then make use of that
weighted version in the case of Bary–Stechkin–Zygmund type weights in Subsection 3.3.

Let

M#
Ωf(x) = sup

r>0

1
|B(x, r)|

∫
B(x,r)∩Ω

|f(y) − fB(x,r)| dy, x ∈ R
n, (3.6)

be the sharp maximal function, where fB(x,r) = 1
|B(x,r)|

∫
B(x,r)∩Ω

f(z) dz.

We write M# = M#
Rn in the case where Ω = R

n.
Similarly to [12], in the proof of Theorem 3.6 in Subsection 3.2 will follow the known approach based on the

following statement.

Theorem 3.3 ([1]) Let k(x, y) be a standard kernel and let the operator T be of weak (1, 1)-type. Then for
arbitrary s, 0 < s < 1, there exists a constant cs > 0 such that[M#(|Tf |s)(x)

] 1
s ≤ csMf(x) for all f ∈ C∞

0 (Rn), x ∈ R
n. (3.7)

The following statement holds (see [11, Lemma 3.5]).

Theorem 3.4 Let p ∈ P(Rn). Then for all f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn) there holds∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ ≤ c

∫
Rn

M#f(x)Mg(x) dx

with a constant c > 0 not depending on f .

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Theorem 3.5 Let p(x) ∈ P(Rn), and let 1
w ∈ Ap′(·)(Rn). Then

‖wf‖Lp(·)(Rn) ≤ c ‖wM#f‖Lp(·)(Rn)

with a constant c > 0 not depending on f .

P r o o f. We have

‖fw‖Lp(·)(Rn) ≤ c sup
‖g‖

Lp′(·)(Rn)
≤1

∣∣∣∣∫
Rn

f(x)g(x)w(x) dx

∣∣∣∣ .

Then by Theorem 3.4

‖fw‖Lp(·)(Rn) ≤ c sup
‖g‖

Lp′(·)(Rn)
≤1

∣∣∣∣∫
Rn

M#f(x)w(x)[w(x)]−1M(gw) dx

∣∣∣∣ .

Making use of the Hölder inequality for Lp(·), we derive

‖fw‖Lp(·)(Rn) ≤ c sup
‖g‖

Lp′(·)≤1

∥∥wM#f‖Lp(·)(Rn)

∥∥w−1M(wg)
∥∥

Lp′(·)(Rn)
.

The operator w−1Mw is bounded in the space Lp′(·)(Rn) by assumption. Therefore,

‖fw‖Lp(·)(Rn) ≤ c1 sup
‖g‖

Lp′(·)≤1

‖wM#f‖Lp(·)‖g‖Lp′(·)(Rn) ≤ c1‖wM#f‖Lp(·)(Rn).

3.2 A general statement

Theorem 3.6 Let p ∈ P(Rn) and let the weight function ρ satisfy the assumptions
i) |{x ∈ Rn : ρ(x) = 0}| = 0;

ii) ρ ∈ Ap(·)(Rn) and 1
ρ ∈ Ap′(·)(Rn);

iii) there exists an s ∈ (0, 1) such that 1
ρs ∈ A( p(·)

s )′(R
n).

Then a singular operator T with a standard kernel k(x, y) and of weak (1, 1)-type is bounded in the space
Lp(·)(Rn, ρ).

P r o o f. Let f ∈ C∞
0 (Rn) and 0 < s < 1. By (2.5) we have

‖ρ Tf‖Lp(·)(Rn) = ‖ρs |Tf |s‖ 1
s

L
p(·)

s (Rn)
. (3.8)

Applying Theorem 3.5 with w(x) = [ρ(x)]s and p(·) replaced by p(·)
s , we obtain

‖ρ Tf‖Lp(·)(Rn) ≤ c
∥∥ρsM#(|Tf |s)∥∥ 1

s

L
p(·)

s (Rn)
,

the application of Theorem 3.5 being possible by assumption iii) of the theorem. Then by (2.5), Theorem 3.3 and
the assumption ρ ∈ Ap(·)(Rn), it follows

‖ρ Tf‖Lp(·)(Rn) ≤ c
∥∥∥ρ

[M#(|Tf |s)] 1
s

∥∥∥
Lp(·)(Rn)

≤ c ‖ρ(Mf)‖Lp(·)(Rn) ≤ c ‖ρf‖Lp(·)(Rn) (3.9)

for all f ∈ C∞
0 (Rn). To complete the proof of the theorem, it remains to observe that C∞

0 (Rn) is dense in
Lp(·)(Rn, ρ), see [22, Theorem 4.1]. (In [22] this denseness was proved under assumption i) and the condition
[ρ(x)]p(x) ∈ L1

loc(R
n), but the latter follows from the assumption ρ ∈ Ap(·)(Rn) in ii)).
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3.3 The case of Bary–Stechkin–Zygmund type weights

From Theorem 3.6 we derive the following statement.

Theorem 3.7 Let Ω be a bounded open set in Rn and let p ∈ Plog(Ω). A singular operator TΩ with a standard
kernel k(x, y) and bounded from L1(Ω) to L1,∞(Ω) is bounded in the space Lp(·)(Ω, ρ) with weight

ρ(x) =
m∏

k=1

wk(|x − xk|), xk ∈ Ω, (3.10)

where

wk(r),
1

wk(r)
∈ W̃ ([0, �]), � = diam Ω, (3.11)

if

− n

p(xk)
< mwk

≤ Mwk
<

n

p′(xk)
, k = 1, 2, . . . , m. (3.12)

P r o o f. To apply Theorem 3.6, we make an extension

f̃(x) =

{
f(x), x ∈ Ω,

0, x /∈ Ω,

of a function f ∈ Lp(·)Ω, extend p(x) outside Ω as p∗(x) with preservation of the log-condition in Rn and either
constant at infinity, or satisfying condition (3.5) so that p∗ ∈ P(Rn). This is always possible, as is known. We
also extend the weight ρ(x) to be constant outside some big ball:

ρ̃(x) =
m∏

k=1

w̃k(|x − xk|), where w̃k(r) =

{
wk(r), 0 ≤ r ≤ �,

wk(�), r ≥ �.
(3.13)

We have

‖ρ TΩf‖Lp(·)(Ω) ≤
∥∥ρ̃ T f̃

∥∥
Lp∗(·)(Rn)

.

To apply Theorem 3.6 to the right-hand side, we have to check that assumptions i)–iii) of that theorem are
satisfied in the case of weight function (3.13) with conditions (3.11) and (3.12). Assumption i) is obviously
satisfied, since the set {x ∈ Rn : ρ(x) = 0 or ρ(x) = ∞} is just the finite set of points x1, x2, . . . , xm.

Let us check condition ii). We have

Ip∗
(
ρ̃Mf̃

) ≤
∫

Ω

|ρ(x)MΩf(x)|p(x)dx + C

∫
Rn\Ω

|Mf(x)|p∗(x)dx.

The first term here is covered by Theorem 2.2, while the second term does not involve weight and is bounded by
the well-known Diening–Cruz–Uribe–Fiorenza–Neugebauer non-weighted result, since p∗ satisfies the required
conditions.

Therefore, ρ̃ ∈ Ap(·)(Rn).
To check that, 1

eρ ∈ Ap′(·)(Rn), it suffices to verify conditions (2.9) and (2.10) for 1
eρ with respect to p′.

According to Remark 2.3 and by assumption (3.13), we only have to verify condition (2.10):

− n

p′(xk)
< m 1

wk

≤ M 1
w k

<
n

p(xk)
, k = 1, 2, . . . , m,

which coincides with the same condition (3.12) in view of (2.16).

It remains to verify condition iii) of Theorem 3.6. Again, it suffices to check condition (2.10) for 1
ρs with

respect to the exponent
(p(·)

s

)′
. After easy calculation with the formulas msω = smω and (2.16) taken into

account, it turns to be

− n

p(xk)
< mwk

≤ Mwk
<

n

p′(xk)
·

p(xk)
s − 1

p(xk) − 1
,

which is automatically satisfied for any 0 < s ≤ 1 in view of (2.10), since
p(xk)

s −1

p(xk)−1 ≥ 1.
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4 Weighted boundedness of the Cauchy singular operator on Carleson curves

4.1 Preliminaries

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ � ≤ ∞} be a simple rectifiable curve with arc-length measure ν(t) = s. We
denote

γ(t, r) := Γ ∩ B(t, r), t ∈ Γ, r > 0, (4.1)

where B(t, r) = {z ∈ C : |z − t| < r} and for brevity write

ν(γ(t, r)) = |γ(t, r)|.

We assume that Γ is a Carleson curve, that is, there exists a constant c0 > 0 not depending on t and r, such that

|γ(t, r)| ≤ c0r. (4.2)

As usual, p : Γ → (1,∞) is a measurable function on Γ with

1 < p− := ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) =: p+ < ∞, (4.3)

|p(t) − p(τ)| ≤ A

ln 1
|t−τ |

, t ∈ Γ, τ ∈ Γ, |t − τ | ≤ 1
2
. (4.4)

In the case where Γ is an infinite curve, Theorem 4.1 below uses also the condition

|p(t) − p(τ)| ≤ A∞
ln 1

| 1t − 1
τ |

,
∣∣1

t − 1
τ

∣∣ ≤ 1
2
, |t| ≥ L, |τ | ≥ L, (4.5)

for some L > 0.
Similarly to the euclidean case we define Lp(·)(Γ, w) as the Banach space of measurable functions f : Γ → C

such that

‖f‖Lp(·)(Γ,ρ) := ‖ρf‖p(·) = inf

{
λ > 0 :

∫
Γ

∣∣∣∣ρ(t)f(t)
λ

∣∣∣∣p(t)

dν(t) ≤ 1

}
< ∞. (4.6)

We consider the weighted boundedness of the singular operator

SΓf(t) =
1
πi

∫
Γ

f(τ)
τ − t

dν(τ) (4.7)

along a Carleson curve Γ.
In [20] and [24] the following Theorem 4.1 was proved taking

ρ(t) =
n∏

k=1

|t − tk|βk , tk ∈ Γ, (4.8)

in the case of finite curve, and the weights

ρ(t) = |t − z0|β
n∏

k=1

|t − tk|βk , tk ∈ Γ, z0 /∈ Γ, (4.9)

in the case of infinite curve.
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Theorem 4.1 Let
i) Γ be a simple Carleson curve;

ii) p satisfy conditions (4.3) and (4.4), and also (4.5) in the case Γ is an infinite curve.
Then the singular operator SΓ is bounded in the space Lp(·)(Γ, ρ) with weight (4.8) or (4.9), if and only if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, . . . , n, (4.10)

and also

− 1
p∞

< β +
n∑

k=1

βk <
1

p′(∞)
(4.11)

in the case when Γ is infinite.

4.2 The case of Bary–Stechkin–Zygmund type weights

Let now

ρ(t) =
m∏

k=1

wk(|t − tk|)), tk ∈ Γ. (4.12)

As in Theorem 3.7, we suppose that

wk(r),
1

wk(r)
∈ W̃ ([0, �]), � = ν(Γ). (4.13)

First of all we note that for the maximal operator

MΓf(t) = sup
r>0

1
ν{γ(t, r)}

∫
γ(t,r)

|f(τ)| dν(τ) (4.14)

on a Carleson curve Γ the following analogue of Theorem 2.2 is valid.

Theorem 4.2 Let Γ be a simple finite Carleson curve and let p satisfy conditions (4.3) and (4.4). The operator
MΓ is bounded in the space Lp(·)(Γ, ρ) with weight (4.12)–(4.16), if

− 1
p(tk)

< mwk
≤ Mwk

<
n

p′(tk)
, k = 1, 2, . . . , m. (4.15)

The statement of this theorem for power weights w(|t− tk|) = |t− tk|αk when mwk
= Mwk

= αk was given
in [24]. The proof of Theorem 4.2 for non-power weights is similar to the euclidean case of Theorem 2.2, so we
do not dwell on it.

Theorem 4.3 Let
i) Γ be a simple finite Carleson curve;

ii) p satisfy conditions (4.3) and (4.4)).
Then the singular operator SΓ is bounded in the space Lp(·)(Γ, ρ) with weight (4.12), where

wk(r),
1

wk(r)
∈ W̃ ([0, �]), � = ν(Γ), (4.16)

if

− 1
p(tk)

< mwk
≤ Mwk

<
1

p′(tk)
, k = 1, 2, . . . , m. (4.17)

With Theorem 4.2 taken into account, to prove Theorem 4.3 we repeat the arguments we have used in the
proof of Theorems 3.3 and 3.7 and therefore we omit its proof.
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0 (ρ)
with the weight ρ(x) = (x−a)µ(b−x)ν) and given continuity modulus of continuity, Deposited in VINITI on 11 May
1986 under No. 3350-B, Moscow (in Russian).

[30] Kh. M. Murdaev and S. G. Samko, Weighted estimates of the modulus of continuity for fractional integrals of function
with a given continuity modulus of continuity, Deposited in VINITI on 11 May 1986 under No. 3351-B, Moscow (1986)
(in Russian).

[31] A. Nekvinda, Hardy–Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl. 7, No. 2, 255–265 (2004).
[32] N. G. Samko, Singular integral operators in weighted spaces with generalized Hölder condition, Proc. A. Razmadze
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