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Abstract. We prove the boundedness of the Hardy–Littlewood maximal
operator on variable Morrey spaces Lp(·),λ(·)(Ω) over a bounded open set Ω ⊂
Rn and a Sobolev type Lp(·),λ(·) → Lq(·),λ(·)-theorem for potential operators
Iα(·), also of variable order. In the case of constant α, the limiting case is
also studied when the potential operator Iα acts into BMO space.
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1. Introduction

We introduce the variable exponent Morrey spaces Lp(·),λ(·)(Ω) over an open
set Ω ⊂ Rn, well known in the case where p and λ are constant, see for instance
[10], [17]. Last decade there was a real boom in the investigation of vari-
able exponent Lebesgue spaces Lp(·)(Ω) and the corresponding Sobolev spaces
Wm,p(·)(Ω). We refer to surveys [7], [12], [21] on the progress in this field,
including topics of Harmonic Analysis and Operator Theory.

In this paper, within the framework of variable Morrey spaces Lp(·),λ(·)(Ω) over
bounded sets Ω ⊂ Rn, we consider the Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|
∫

eB(x,r)

|f(y)|dy

and potential type operators

Iα(·)f(x) =

∫

Ω

f(y) dy

|x− y|n−α(x)

of variable order α(x).
We prove the boundedness of the maximal operator in Morrey spaces under

the log-condition on p(·) and λ(·), in the case of Lebesgue spaces (λ(x) ≡ 0)
this result being due to L. Diening [5]. For potential operators, under the same
log-conditions and the assumptions inf

x∈Ω
α(x) > 0, sup

x∈Ω
[λ(x) + α(x)p(x)] < n,

we prove a Sobolev type Lp(·),λ(·) → Lq(·),λ(·)-theorem. In the case λ(x) ≡ 0 the
Sobolev Theorem for variable Lebesgue spaces is known to be obtained – via the
Hedberg approach – from the boundedness of the maximal operator, see [20].

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



2 A. ALMEIDA, J. HASANOV AND S. SAMKO

As a corollary of the Sobolev Theorem, we derive the corresponding bound-
edness of the fractional maximal operator

Mα(·)f(x) = sup
r>0

1

|B(x, r)|1−α(x)
n

∫

eB(x,r)

|f(y)|dy.

In the case of constant α, we also prove a boundedness theorem in the limiting

case p(x) = n−λ(x)
α(x)

, when the potential operator Iα acts from Lp(·),λ(·) into BMO.

Notation:
Rn is the n-dimensional Euclidean space;
Ω is a non-empty open set in Rn;
dΩ denotes the diameter of Ω;
χE is a characteristic function of a measurable set E ⊂ Rn;
|E| is the Lebesgue measure of E;

B(x, r) = {y ∈ Rn : |x− y| < r}, B̃(x, r) = B(x, r) ∩ Ω;
by c and C we denote various absolute positive constants, which may have

different values even in the same line.

2. Preliminaries on Variable Exponent Lebesgue Spaces

Let p(·) be a measurable function on Ω with values in [1,∞). We assume that

1 ≤ p− ≤ p(x) ≤ p+ < ∞, (1)

where we use the standard notation

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

By Lp(·)(Ω) we denote the space of all measurable functions f on Ω such that

Ip(·)(f) =

∫

Ω

|f(x)|p(x)dx < ∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. As is known, the following inequalities hold

‖f‖p+

p(·) ≤ Ip(·)(f) ≤ ‖f‖p−
p(·) if ‖f‖p(·) ≤ 1, (2)

‖f‖p−
p(·) ≤ Ip(·)(f) ≤ ‖f‖p+

p(·) if ‖f‖p(·) ≥ 1, (3)

from which it follows that

c1 ≤ ‖f‖p(·) ≤ c2 =⇒ c3 ≤ Ip(·)(f) ≤ c4 (4)

and

C1 ≤ Ip(·)(f) ≤ C2 =⇒ C3 ≤ ‖f‖p(·) ≤ C4, (5)
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with c3 = min (c
p−
1 , c

p+

1 ), c4 = max (c
p−
2 , c

p+

2 ), C3 = min
(
C

1/p−
1 , C

1/p+

1

)
and

C4 =

max
(
C

1/p−
2 , C

1/p+

2

)
.

As usual, we denote by p′(·) the conjugate exponent given by p′(x)=
p(x)

p(x)− 1
,

x ∈ Ω. The Hölder inequality is valid in the form
∫

Ω

|f(x)g(x)| dx ≤
(

1

p−
+

1

p′−

)
‖f‖p(·) ‖g‖p′(·). (6)

If Ω is bounded and p(x) ≤ q(x), there holds the embedding

Lq(·)(Ω) ↪→ Lp(·)(Ω). (7)

For the basics of variable exponent Lebesgue spaces we refer to [22], [16].
The Lp(·)-boundedness of the Hardy–Littlewood maximal operator was proved

by L. Diening [5] under the conditions

1 < p− ≤ p(x) ≤ p+ < ∞ (8)

and

|p(x)− p(y)| ≤ A

− ln |x− y| , |x− y| ≤ 1

2
, x, y ∈ Ω, (9)

where A > 0 does not depend on x, y.
The proof of the boundedness of the maximal operator was based on the

following pointwise estimate.

Lemma 1. ([5]) Let Ω be bounded and let p(·) satisfy conditions (8), (9).
Then there exists a constant C > 0 such that, for all ‖f‖p(·) ≤ 1,

(Mf(x))
p(x)
p− ≤ C

[
M

(
|f(·)|

p(·)
p−

)
(x) + 1

]
. (10)

We will also make use of the following statement proved in [20], Theorem 1.17.

Theorem 1. Let p(·) satisfy assumptions (1) and (9) and β(·) satisfy the
conditions

sup
x∈Ω

β(x) < ∞, inf
x∈Ω

β(x)p(x) > n. (11)

Then the estimate ∥∥∥∥
χRn\B(x,r)(·)
|x− ·|β(x)

∥∥∥∥
p(·)

≤ C r
n

p(x)
−β(x) (12)

is valid, where the constant C > 0 depends on sup
x∈Ω

β(x) and inf
x∈Ω

[β(x)p(x)− n],

but does not depend on x and r.

We note that the logarithmic condition (9) is usually called the log-Hölder
continuity or the Dini–Lipschitz condition.
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3. Variable Exponent Morrey Spaces

3.1. Definition. Let λ(·) be a measurable function on Ω with values in [0, n].
We define the variable Morrey space Lp(·),λ(·)(Ω) as the set of all integrable
functions f on Ω such that

Ip(·),λ(·)(f) := sup
x∈Ω, r>0

r−λ(x)

∫

eB(x,r)

|f(y)|p(y)dy < ∞. (13)

The norm in the space Lp(·),λ(·)(Ω) may be introduced in two forms,

‖f‖1 = inf

{
η > 0 : Ip(·),λ(·)

(
f

η

)
≤ 1

}

and

‖f‖2 = sup
x∈Ω, r>0

∥∥∥r−
λ(x)
p(·) f χ eB(x,r)

∥∥∥
p(·)

,

which actually coincide, as shown in Lemma 3. First we need the following
lemma.

Lemma 2. For every f ∈ Lp(·),λ(·)(Ω), the inequalities

‖f‖p+

i ≤ Ip(·),λ(·)(f) ≤ ‖f‖p−
i if ‖f‖i ≤ 1, (14)

‖f‖p−
i ≤ Ip(·),λ(·)(f) ≤ ‖f‖p+

i if ‖f‖i ≥ 1 (15)

are valid, i = 1, 2.

Proof. Let

F (x, r; η) =
1

rλ(x)

∫

B(x,r)

∣∣∣∣
f(y)

η

∣∣∣∣
p(y)

dy. (16)

For every (x, r) ∈ Ω×(0, dΩ), the function F (x, r; η) is decreasing in η ∈ (0,∞).
We have

sup
x∈Ω, r>0

F (x, r; 1) = Ip(·),λ(·)(f) (17)

and by the definition of the norm ‖ · ‖1,

sup
x∈Ω, r>0

F (x, r; ‖f‖1) = 1. (18)

Then from (17)–(18), by the monotonicity of F (x, r; η) in η, inequalities (14)–
(15) with i = 1 follow. To cover the case i = 2, that is, the case of the norm

‖f‖2 = sup
x∈Ω, r>0

‖gx,r‖p(·) ,

where gx,r = r−
λ(x)
p(·) f χ eB(x,r)(·), we make use of inequalities (2)–(3) of the Lp(·)-

norm and have

‖gx,r‖p+

p(·) ≤ Ip(·)(gx,r) ≤ ‖gx,r‖p−
p(·) if ‖gx,r‖p(·) ≤ 1,

and similarly for the case ‖gx,r‖p(·) ≥ 1. Taking the supremum with respect to
x and r, we obtain (14)–(15) for i = 2. ¤



MAXIMAL AND POTENTIAL OPERATORS IN EXPONENT MORREY SPACES 5

Lemma 3. For every f ∈ Lp(·),λ(·)(Ω) we have

‖f‖2 = ‖f‖1.

Proof. We note that

‖f‖2 = sup
x∈Ω, r>0

{µx,r > 0 : F (x, r, µx,r) = 1} ,

where F (x, r; η) is function (16). From the equality F (x, r; µx,r) = 1 and the
inequality F (x, r; ‖f‖1) ≤ 1 following from (18), by the monotonicity of the
function F (x, r; η) with respect to η, we conclude that

‖f‖2 ≤ ‖f‖1.

From relations (14) we easily derive

‖f‖1 ≤





‖f‖
p−
p+

2 if ‖f‖1 ≤ 1,

‖f‖2 if ‖f‖1 ≥ 1, ‖f‖2 ≤ 1,

‖f‖
p+
p−
2 if ‖f‖1 ≥ 1, ‖f‖2 ≥ 1.

Substituting here f
‖f‖2 instead of f , we obtain

∥∥∥ f
‖f‖2

∥∥∥
1
≤ 1, that is, ‖f‖1 ≤ ‖f‖2,

which completes the proof. ¤

By the coincidence of the norms we put

‖f‖p(·),λ(·) := ‖f‖1 = ‖f‖2.

Remark 1. When the open set Ω is bounded, the supremum defining the norm
‖ · ‖2 is always reached for values of r less than dΩ. Indeed, if r ≥ dΩ we have

∥∥∥r−
λ(x)
p(·) f χ eB(x,r)

∥∥∥
p(·)

≤
∥∥∥∥d

−λ(x)
p(·)

Ω f χ eB(x,dΩ)

∥∥∥∥
p(·)

.

Lemma 5 below provides another equivalent norm on Lp(·),λ(·)(Ω) when
|Ω| < ∞. Basically, it states that in case λ(·) is log-continuous, there is no
difference in taking the parameter λ depending on x or y. Lemma 5 is an
immediate consequence of the following simple lemma.

Lemma 4. Let Ω be a bounded open set and λ(·) satisfy the logarithmic
condition

|λ(x)− λ(y)| ≤ Aλ

− ln |x− y| , |x− y| ≤ 1

2
, x, y ∈ Ω. (19)

Then
1

C
r−λ(y) ≤ r−λ(x) ≤ Cr−λ(y) (20)

for all x, y ∈ Ω such that |x− y| ≤ r, with the constant C = eAλ not depending
on x, y and r.
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Proof. Since the set Ω is bounded and λ(·) is a bounded function, it suffices to
check (20) for small r ≤ 1. It is easy to see that (20) is equivalent to

|λ(x)− λ(y)| ln
1

r
≤ C1 : = ln C = Aλ, (21)

which is valid since ln 1
r
≤ ln 1

|x−y| . ¤

Lemma 5. If Ω is bounded and λ(·) is log-Hölder continuous, then the func-
tional

‖f‖3 := sup
x∈Ω, r>0

∥∥∥r−
λ(·)
p(·) f χ eB(x,r)

∥∥∥
p(·)

(22)

defines an equivalent norm in Lp(·),λ(·)(Ω).

The definitions above recover the classical Morrey spaces (see, for example,
[17], Ch. 4), that is, Lp(·),λ(·)(Ω) = Lp,λ(Ω) if p(x) ≡ p and λ(x) ≡ λ are con-
stant. Furthermore, if λ(x) ≡ 0, then Lp(·),λ(·)(Ω) coincides with the Lebesgue
space Lp(·)(Ω).

3.2. Embeddings of variable Morrey spaces. In Lemma 7 we prove em-
beddings of the Morrey spaces with variable p(·) and λ(·), known for constant
exponents (see [17], Theorem 4.3.6 or [10], Ch. III, Proposition 1.1). To this
end, we first need the estimate given in the following lemma which was ob-
tained in [11] in the framework of general metric measure spaces setting; we
give its another proof for the sake of completeness. This estimate serves better

for our goals than the known ([6]) estimate
∥∥∥χ eB(x,r)

∥∥∥
p(·)

≤ |B(x, r)| 1p B , with

1
pB

= 1
|B(x,r)|

∫
B(x,r)

dy
p(y)

.

Lemma 6. Let Ω be a bounded open set in a metric measure space (X, d, µ)
where the measure µ satisfies the lower Ahlfors condition µB(x, r) ≥ c rδ, δ > 0,
and let p(·) satisfy the log-condition on Ω. Then∥∥∥χ eB(x,r)

∥∥∥
p(·)

≤ C [µB(x, r)]
1

p(x) (23)

with C > 0 not depending on x ∈ Ω and r > 0 (for small r one may take

C = e
Aδ

p2− , where A > 0 is the constant from the log-condition).

Proof. Let x ∈ Ω and 0 < r < dΩ. Since p(·) is log-Hölder continuous and the
lower Ahlfors condition holds, it is easy to check that

1

C
µB(x, r) ≤ [µB(x, r)]

p(y)
p(x) ≤ C µB(x, r) (24)

for all y ∈ B̃(x, r), where C ≥ 1 does not depend on x, y and r. Hence for

C1 = C
1

p− we have∫

eB(x,r)

dµ(y)

C
p(y)
1 [µB(x, r)]

p(y)
p(x)

≤
∫

eB(x,r)

dµ(y)

µB(x, r)
≤ 1.
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Then
∥∥∥χ eB(x,r)

∥∥∥
p(·)

= inf

{
η > 0 :

∫

eB(x,r)

η−p(y) dµ(y) ≤ 1

}
≤ C1 [µB(x, r)]

1
p(x) . ¤

Lemma 7. Let Ω be bounded, 0 ≤ λ(x) ≤ n and 0 ≤ µ(x) ≤ n. If p(·) and
q(·) are log-Hölder continuous, p(x) ≤ q(x) and

n− λ(x)

p(x)
≥ n− µ(x)

q(x)
, (25)

then

Lq(·),µ(·)(Ω) ↪→ Lp(·),λ(·)(Ω). (26)

Proof. Let ‖f‖q(·),µ(·) ≤ 1. This is equivalent to assuming that Iq(·),µ(·)(f) ≤ 1

(see Lemma 2). We have to show that Ip(·),λ(·)(f) ≤ C for some C > 0 not
depending on f . Let x ∈ Ω and r ∈ (0, dΩ). Applying the Hölder inequality (6)

with the exponent p1(x) = q(x)
p(x)

, we get

r−λ(x)

∫

eB(x,r)

|f(y)|p(y)dy ≤ 2 r−λ(x)
∥∥∥f p(·)χ eB(x,r)

∥∥∥
p1(·)

∥∥∥χ eB(x,r)

∥∥∥
p′1(·)

. (27)

By Lemma 6 we have
∥∥∥χ eB(x,r)

∥∥∥
p′1(·)

≤ C rn(1− p(x)
q(x)). (28)

For the norm
∥∥∥f p(·)χ eB(x,r)

∥∥∥
p1(·)

we have the estimate

∥∥∥f p(·)χ eB(x,r)

∥∥∥
p1(·)

= inf

{
η > 0 :

∫

eB(x,r)

|f(y)|q(y) η−
q(y)
p(y) dy ≤ 1

}

≤ Ap+ rµ(x)
p(x)
q(x) , (29)

where A is the constant from the inequality

1

A
r

µ(x)
q(y) ≤ r

µ(x)p(x)
q(x)p(y) ≤ Ar

µ(x)
q(y) (30)

(A ≥ 1 not depending on x, y, r). Indeed, by (30),

∫

eB(x,r)

(
|f(y)|

[
Ap+ rµ(x)

p(x)
q(x)

]− 1
p(y)

)q(y)

dy ≤
∫

eB(x,r)

(
A−1 |f(y)| r−µ(x)p(x)

q(x)p(y)

)q(y)

dy

≤ r−µ(x)

∫

eB(x,r)

|f(y)|q(y) dy ≤ 1
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which proves (29). Making use of estimates (28) and (29) in (27), we get∫

eB(x,r)

|f(y)|p(y)dy ≤ C rn−λ(x)− p(x)
q(x)

[n−µ(x)],

which is dominated by rµ(x) under condition (25). Then Ip(·),λ(·)(f) ≤ c, with
c not depending on x and r. Therefore ‖f‖p(·),λ(·) ≤ C (see Lemma 2), which

proves embedding (26).
To complete the proof, it remains to note that estimate (30) is a consequence

of the log-Hölder continuity of p(·)
q(·) . ¤

4. The Maximal Operator in Variable Exponent Morrey Spaces

Following the notation above we put λ+ := ess sup
x∈Ω

λ(x). In the sequel we

suppose that
0 ≤ λ(x) ≤ λ+ < n, x ∈ Ω. (31)

For the constant exponents p(x) ≡ p and λ(x) ≡ λ the following theorem was
proved in [4].

Theorem 2. Let Ω be a bounded open set in Rn. Under conditions (31), (8)
and (9), the maximal operator M is bounded in the space Lp(·),λ(·)(Ω).

Proof. We have to show that

Ip(·),λ(·)(Mf) ≤ C for all f with ‖f‖p(·),λ(·) ≤ c, (32)

where c > 0 and C = C(c) does not depend on f . We continue the function f
by zero beyond the set Ω whenever necessary, and obtain

∫

eB(x,r)

(Mf(y))p(y) dy =

∫

Rn

(
(Mf(y))

p(y)
p−

)p−

χ eB(x,r)(y)dy.

Since Ω is bounded, ‖f‖p,λ ≥ c ‖f‖p with some c > 0 depending only on dΩ and
λ+. Then the pointwise estimate (10) is applicable, which yields

∫

eB(x,r)

[Mf(y)]p(y)dy ≤C




∫

Ω

[
M

(
|f(·)|

p(·)
p−

)]p−

χ eB(x,r)(y) dy +

∫

Ω

χ eB(x,r)(y) dy


.

By the Fefferman–Stein inequality (for constant p ∈ (1,∞))∫

Rn

(Mg)(y)p h(y) dy ≤
∫

Rn

g(y)p (Mh)(y) dy,

valid for all non-negative functions g, h (see [9]), we get

∫

eB(x,r)

(Mf(y))p(y) dy ≤ C




∫

Ω

|f(y)|p(y)Mχ eB(x,r)(y) dy + rn


 .
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The following estimate is known

MχB(x,r)(y) ≤ 4n rn

(|x− y|+ r)n
, x, y ∈ Rn, r > 0,

see [3], Lemma 2. Therefore∫

eB(x,r)

(Mf(y))p(y) dy

≤ C

( ∫

eB(x,2r)

|f(y)|p(y)dy +
∞∑

j=1

∫

eB(x,2j+1r)\ eB(x,2jr)

rn |f(y)|p(y)

(|x− y|+ r)n
dy + rn

)

≤ C

(
rλ(x) +

∞∑
j=1

(2j+1r)λ(x)

(2j + 1)n
+ rn

)
≤ C

(
rλ(x) + rn

) ≤ C rλ(x),

which proves the uniform estimate Ip(·),λ(·)(f) ≤ C and completes the proof. ¤
Let M ] be the sharp maximal function defined by

M ]f(x) := sup
r>0

1

|B(x, r)|
∫

eB(x,r)

∣∣∣f(y)− f eB(x,r)

∣∣∣ dy,

where

f eB(x,r) =
1

|B̃(x, r)|

∫

eB(x,r)

f(z) dz

is the mean value of f over B̃(x, r). From the boundedness of the maximal
operator M and the pointwise inequality

M ]f(x) ≤ 2Mf(x), x ∈ Ω,

we can derive the following statement.

Corollary 1. Under the same conditions of Theorem 2, the sharp maximal
operator M ] is bounded in Lp(·),λ(·)(Ω).

5. Potential Operators in Variable Morrey Spaces

Below we need to assume that α(·) also satisfies the log-condition

|α(x)− α(y)| ≤ C

− ln |x− y| , |x− y| ≤ 1

2
, x, y ∈ Ω. (33)

The next theorem in the case of constant p and α was proved in [1].

Theorem 3. Let Ω be bounded. Under conditions (8), (9), (33) and the
conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

[λ(x) + α(x)p(x)] < n, (34)

the operator Iα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),λ(·)(Ω), where 1
q(x)

= 1
p(x)

−
α(x)

n−λ(x)
.
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Proof. Let ‖f‖p(·),λ(·) ≤ 1. As always, we continue the function f by zero beyond
the set Ω. We use the standard decomposition

Iα(·)f(x) =

( ∫

B(x,2r)

+

∫

Rn\B(x,2r)

)
f(y)|x−y|α(x)−ndy =: F (x, r)+G(x, r). (35)

The pointwise estimate

|F (x, r)| ≤ C rα(x)Mf(x) (36)

with a constant C > 0 not depending on f and x is well known in the case of
constant α and is also valid for variable α(·), under the condition inf

x∈Ω
α(x) > 0

(see [20], formula (56)). For G(x, r) we have

|G(x, r)| ≤ C

∞∑
j=1

∫

eB(x,2j+1r)\ eB(x,2jr)

|f(y)| (2jr)−
λ(x)
p(y) |x− y|α(x)−n+

λ(x)
p(y) dy ,

where the series turns out to be a finite sum
N∑

j=1

for any fixed r > 0, with

N = N(r) tending to infinity as r → 0. Since the set Ω is bounded and p(·)
satisfies the log-condition, we also have

|G(x, r)| ≤ C

∞∑
j=1

∫

eB(x,2j+1r)\ eB(x,2jr)

|f(y)| (2jr)−
λ(x)
p(y) |x− y|α(x)−n+

λ(x)
p(x) dy. (37)

Applying the Hölder inequality, we get

|G(x, r)|

≤ C

∞∑
j=1

∥∥∥|x− y|α(x)−n+
λ(x)
p(x)

∥∥∥
p′(·),Rn\B(x,2jr)

∥∥∥(2jr)−
λ(x)
p(·) f

∥∥∥
p(·),B(x,2j+1r)

. (38)

The factor
∥∥∥(2jr)−

λ(x)
p(·) f

∥∥∥
p(·),B(x,2j+1r)

is uniformly bounded. Indeed, to see this,

in view of (4)–(5) it suffices to show the boundedness of the corresponding
modular, i.e. that

Ip(·)
(
(2jr)−

λ(x)
p(·) fχ(B(x,2j+1r)

)
≤ C < ∞,

which is valid, since

Ip(·)
(
(2jr)−

λ(x)
p(·) fχ(B(x,2j+1r)

)
≤ (2j+1r)−λ(x)

∫

B(x,2j+1r)

|f(y)|p(y) dy ≤ C < ∞

by the definition in (13). Therefore, from (38), by Theorem 1 we obtain

|G(x, r)| ≤ C1

∞∑
j=1

(2jr)α(x)−n−λ(x)
p(x) ≤ C2 rα(x)−n−λ(x)

p(x) , (39)
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where the series defining C2 = C1

∞∑
j=1

2−aj, a = 1
p+

inf
x∈Ω

[n− λ(x)− α(x)p(x)] > 0,

is convergent.
Thus, from (36) and (39) we have

∣∣Iα(·)f(x)
∣∣ ≤ C rα(x)Mf(x) + C2 rα(x)−n−λ(x)

p(x) .

Minimizing with respect to r, at r = (Mf(x))−
p(x)

n−λ(x) we get
∣∣Iα(·)f(x)

∣∣ ≤ c (Mf(x))
p(x)
q(x) .

Hence, by Theorem 2, we have∫

eB(x,r)

∣∣Iα(·)f(y)
∣∣q(y)

dy ≤ c

∫

eB(x,r)

(Mf(y))p(y) dy ≤ c rλ(x),

which completes the proof of the theorem. ¤

The statement of the following corollary in the case of constant exponents
p, λ and α is known, see [8], Lemma 4, and [2], Corollary 4.4. Note that in the
case of constant p, λ and α, the norm equivalence of Iαf and Mαf in Morrey
spaces is also known, see [2].

Corollary 2. Under the assumptions of Theorem 3 the fractional maximal
operator Mα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),λ(·)(Ω).

Proof. The result follows from Theorem 3 in view of the pointwise estimate

Mα(·)f(x) ≤ c Iα(·)(|f |)(x), 0 < α(x) < n, (40)

where c > 0 does not depend on f and x. This inequality, well known for
constant α, is also valid for variable α(x) with

c = sup
x∈Ω

(
n

|Sn−1|
)1−α(x)

n

< ∞,

where Sn−1 is the unit sphere in Rn. To prove (40), we observe that Iα(·)(|f |)(x)≥∫
eB(x,r)

|f(y)| dy

|x−y|n−α(x) for any x ∈ Ω and r > 0. Since |B(x, r)| = |Sn−1|
n

rn, we have

1

|B(x, r)|1−α(x)
n

∫

eB(x,r)

|f(y)|dy ≤
(

n

|Sn−1|
)1−α(x)

n
∫

eB(x,r)

|f(y)|
|x− y|n−α(x)

dy,

whence (40) follows. ¤

The following statement holds by Theorem 3 and embedding (26).

Theorem 4. Let the set Ω be bounded and p(·) satisfy conditions (8) and (9).
Assume also that α(·) and λ(·) are log-Hölder continuous and condition (34)
is satisfied. Then the operator Iα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),µ(·)(Ω),
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where q(·) is any exponent satisfying log-condition (9) and the condition 1 ≤
q(x) ≤ p(x)[n−λ(x)]

n−[λ(x)+α(x)p(x)]
, and µ(·) is defined by the condition

n− µ(x)

q(x)
=

n− λ(x)

p(x)
− α(x).

In particular, one may take

1

q(x)
=

1

p(x)
− α(x)

n
and µ(x) =

nλ(x)

n− α(x)p(x)
. (41)

For constant exponents the statement of Theorem 4 in the case of (41) may
be found, for example, in [4] (see Corollary on page 277).

Similarly to Corollary 2 we derive the following result.

Corollary 3. Under the assumptions of Theorem 4, the fractional maximal
operator Mα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),µ(·)(Ω).

6. Potential Operators: the Limiting Case

In this section we study the limiting case in (34), that is, we consider the
critical exponent

p(x) =
n− λ(x)

α(x)
. (42)

Theorem 5. Let Ω be bounded, p(·) satisfy conditions (8), (9) and inf
x∈Ω

α(x) >

0. In the case of exponent (42) the operator Mα(·) is bounded from Lp(·),λ(·)(Ω)
to L∞(Ω) :

‖Mα(·)f‖∞ ≤ C ‖f‖p(·),λ(·). (43)

Proof. Let x ∈ Ω and r > 0. By the log-condition, property (20), the Hölder
inequality and estimate (23), we get successively

|B(x, r)|α(x)
n
−1

∫

eB(x,r)

|f(y)| dy = |B(x, r)|α(x)
n
−1

∫

eB(x,r)

r
λ(x)
p(y) r−

λ(x)
p(y) |f(y)| dy

≤ C |B(x, r)|α(x)
n
−1 r

λ(x)
p(x)

∫

eB(x,r)

r−
λ(x)
p(y) |f(y)| dy

≤ Crα(x)−n+
λ(x)
p(x)

∥∥∥r−
λ(x)
p(·) f χ eB(x,r)

∥∥∥
p(·)

∥∥∥χ eB(x,r)

∥∥∥
p′(·)

≤ C rα(x)−n+
λ(x)
p(x) ‖f‖p(·),λ(·) |B(x, r)| 1

p′(x) ≤ C ‖f‖p(·),λ(·). ¤
Remark 2. Since the set Ω is bounded, inequality (43) obviously holds also

in the super-critical case p(x) > n−λ(x)
α(x)

.

In the limiting situation, the mapping properties of the Riesz potential oper-
ator Iα(·) and the fractional maximal operator Mα(·) are slightly different. For
constant exponents, it is well known that a result similar to Theorem 5 holds for
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Iα only if we replace L∞(Ω) by the space BMO = {f : M ]f ∈ L∞} equipped
with the norm

‖f‖BMO := ‖M ]f‖∞
(supposing that we do not distinguish functions differing by a constant).

The similar Lp(·),λ(·) → BMO-boundedness holds also in the variable expo-
nent setting. In the case of constant exponents this was proved by S. Spanne
and published in [19] (see Theorem 5.4 in [19]). To extend this boundedness to
the case of variable p(·) and λ(·) we make use of the pointwise estimate (see [1],
Proposition 3.3)

M ](Iαf)(x) ≤ cMαf(x), x ∈ Ω. (44)

Then from (44) and Theorem 5 the following statement follows immediately.

Theorem 6. Let λ(x) ≥ 0, 0 < α < n, sup
x∈Ω

λ(x) < n − α, and let p(x) =

n−λ(x)
α

. Then under condition (9) the operator Iα is bounded from Lp(·),λ(·)(Ω) to
BMO(Ω).

Remark 3. Within the framework of variable exponent spaces the result of
Theorem 6 seems to be new even in the case of variable Lebesgue spaces, that
is, in the case, where λ(x) ≡ 0.
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