Volume 15 (2008), Number 2, 1–

MAXIMAL AND POTENTIAL OPERATORS IN VARIABLE EXPONENT MORREY SPACES

ALEXANDRE ALMEIDA, JAVANSHIR HASANOV AND STEFAN SAMKO

Abstract. We prove the boundedness of the Hardy–Littlewood maximal operator on variable Morrey spaces $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ over a bounded open set $\Omega \subset \mathbb{R}^n$ and a Sobolev type $L^{p(\cdot),\lambda(\cdot)} \to L^{q(\cdot),\lambda(\cdot)}$ -theorem for potential operators $I^{\alpha(\cdot)}$, also of variable order. In the case of constant α , the limiting case is also studied when the potential operator I^{α} acts into BMO space.

2000 Mathematics Subject Classification: 42B25, 42B35, 47B38. **Key words and phrases:** Maximal function, fractional maximal operator, Riesz potential, Morrey space, variable exponent, Hardy–Littlewood–Sobolev type estimate, BMO space.

1. INTRODUCTION

We introduce the variable exponent Morrey spaces $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ over an open set $\Omega \subset \mathbb{R}^n$, well known in the case where p and λ are constant, see for instance [10], [17]. Last decade there was a real boom in the investigation of variable exponent Lebesgue spaces $L^{p(\cdot)}(\Omega)$ and the corresponding Sobolev spaces $W^{m,p(\cdot)}(\Omega)$. We refer to surveys [7], [12], [21] on the progress in this field, including topics of Harmonic Analysis and Operator Theory.

In this paper, within the framework of variable Morrey spaces $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ over bounded sets $\Omega \subset \mathbb{R}^n$, we consider the Hardy–Littlewood maximal operator

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{\widetilde{B}(x,r)} |f(y)| dy$$

and potential type operators

$$I^{\alpha(\cdot)}f(x) = \int_{\Omega} \frac{f(y) \, dy}{|x - y|^{n - \alpha(x)}}$$

of variable order $\alpha(x)$.

We prove the boundedness of the maximal operator in Morrey spaces under the log-condition on $p(\cdot)$ and $\lambda(\cdot)$, in the case of Lebesgue spaces $(\lambda(x) \equiv 0)$ this result being due to L. Diening [5]. For potential operators, under the same log-conditions and the assumptions $\inf_{x\in\Omega} \alpha(x) > 0$, $\sup_{x\in\Omega} [\lambda(x) + \alpha(x)p(x)] < n$, we prove a Sobolev type $L^{p(\cdot),\lambda(\cdot)} \to L^{q(\cdot),\lambda(\cdot)}$ -theorem. In the case $\lambda(x) \equiv 0$ the Sobolev Theorem for variable Lebesgue spaces is known to be obtained – via the Hedberg approach – from the boundedness of the maximal operator, see [20]. As a corollary of the Sobolev Theorem, we derive the corresponding boundedness of the fractional maximal operator

$$M^{\alpha(\cdot)}f(x) = \sup_{r>0} \frac{1}{|B(x,r)|^{1-\frac{\alpha(x)}{n}}} \int_{\widetilde{B}(x,r)} |f(y)| dy.$$

In the case of constant α , we also prove a boundedness theorem in the limiting case $p(x) = \frac{n-\lambda(x)}{\alpha(x)}$, when the potential operator I^{α} acts from $L^{p(\cdot),\lambda(\cdot)}$ into BMO.

Notation:

 \mathbb{R}^n is the *n*-dimensional Euclidean space;

 Ω is a non-empty open set in \mathbb{R}^n ;

 d_{Ω} denotes the diameter of Ω ;

 χ_E is a characteristic function of a measurable set $E \subset \mathbb{R}^n$;

|E| is the Lebesgue measure of E;

 $B(x,r) = \{y \in \mathbb{R}^n : |x-y| < r\}, \ \widetilde{B}(x,r) = B(x,r) \cap \Omega;$

by c and C we denote various absolute positive constants, which may have different values even in the same line.

2. Preliminaries on Variable Exponent Lebesgue Spaces

Let $p(\cdot)$ be a measurable function on Ω with values in $[1, \infty)$. We assume that

$$1 \le p_{-} \le p(x) \le p_{+} < \infty, \tag{1}$$

where we use the standard notation

$$p_{-} := \operatorname{ess \ inf}_{x \in \Omega} p(x)$$
 and $p_{+} := \operatorname{ess \ sup}_{x \in \Omega} p(x).$

By $L^{p(\cdot)}(\Omega)$ we denote the space of all measurable functions f on Ω such that

$$I_{p(\cdot)}(f) = \int_{\Omega} |f(x)|^{p(x)} dx < \infty.$$

Equipped with the norm

$$||f||_{p(\cdot)} = \inf \left\{ \eta > 0 : I_{p(\cdot)}\left(\frac{f}{\eta}\right) \le 1 \right\},$$

this is a Banach function space. As is known, the following inequalities hold

$$\|f\|_{p(\cdot)}^{p_{+}} \le I_{p(\cdot)}(f) \le \|f\|_{p(\cdot)}^{p_{-}} \quad \text{if} \quad \|f\|_{p(\cdot)} \le 1,$$
(2)

$$\|f\|_{p(\cdot)}^{p_{-}} \le I_{p(\cdot)}(f) \le \|f\|_{p(\cdot)}^{p_{+}} \quad \text{if} \quad \|f\|_{p(\cdot)} \ge 1,$$
(3)

from which it follows that

$$c_1 \le \|f\|_{p(\cdot)} \le c_2 \quad \Longrightarrow c_3 \le I_{p(\cdot)}(f) \le c_4 \tag{4}$$

and

$$C_1 \le I_{p(\cdot)}(f) \le C_2 \quad \Longrightarrow C_3 \le ||f||_{p(\cdot)} \le C_4, \tag{5}$$

with $c_3 = \min(c_1^{p_-}, c_1^{p_+}), \ c_4 = \max(c_2^{p_-}, c_2^{p_+}), \ C_3 = \min(C_1^{1/p_-}, C_1^{1/p_+})$ and $C_4 = \max(C_2^{1/p_-}, C_2^{1/p_+}).$

As usual, we denote by $p'(\cdot)$ the conjugate exponent given by $p'(x) = \frac{p(x)}{p(x)-1}$, $x \in \Omega$. The Hölder inequality is valid in the form

$$\int_{\Omega} |f(x)g(x)| \, dx \le \left(\frac{1}{p_{-}} + \frac{1}{p'_{-}}\right) \, \|f\|_{p(\cdot)} \, \|g\|_{p'(\cdot)}. \tag{6}$$

If Ω is bounded and $p(x) \leq q(x)$, there holds the embedding

$$L^{q(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega).$$
 (7)

For the basics of variable exponent Lebesgue spaces we refer to [22], [16].

The $L^{p(\cdot)}$ -boundedness of the Hardy–Littlewood maximal operator was proved by L. Diening [5] under the conditions

$$1 < p_{-} \le p(x) \le p_{+} < \infty \tag{8}$$

and

$$|p(x) - p(y)| \le \frac{A}{-\ln|x - y|}, \quad |x - y| \le \frac{1}{2}, \quad x, y \in \Omega,$$
 (9)

where A > 0 does not depend on x, y.

The proof of the boundedness of the maximal operator was based on the following pointwise estimate.

Lemma 1. ([5]) Let Ω be bounded and let $p(\cdot)$ satisfy conditions (8), (9). Then there exists a constant C > 0 such that, for all $||f||_{p(\cdot)} \leq 1$,

$$\left(Mf(x)\right)^{\frac{p(x)}{p_{-}}} \le C\left[M\left(\left|f(\cdot)\right|^{\frac{p(\cdot)}{p_{-}}}\right)(x) + 1\right].$$
(10)

We will also make use of the following statement proved in [20], Theorem 1.17.

Theorem 1. Let $p(\cdot)$ satisfy assumptions (1) and (9) and $\beta(\cdot)$ satisfy the conditions

$$\sup_{x \in \Omega} \beta(x) < \infty, \quad \inf_{x \in \Omega} \beta(x) p(x) > n.$$
(11)

Then the estimate

$$\left\|\frac{\chi_{\mathbb{R}^n \setminus B(x,r)}(\cdot)}{|x - \cdot|^{\beta(x)}}\right\|_{p(\cdot)} \le C r^{\frac{n}{p(x)} - \beta(x)}$$
(12)

is valid, where the constant C > 0 depends on $\sup_{x \in \Omega} \beta(x)$ and $\inf_{x \in \Omega} [\beta(x)p(x) - n]$, but does not depend on x and r.

We note that the logarithmic condition (9) is usually called the log-*Hölder* continuity or the Dini-Lipschitz condition.

3. VARIABLE EXPONENT MORREY SPACES

3.1. Definition. Let $\lambda(\cdot)$ be a measurable function on Ω with values in [0, n]. We define the variable Morrey space $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ as the set of all integrable functions f on Ω such that

$$I_{p(\cdot),\lambda(\cdot)}(f) := \sup_{x \in \Omega, \ r > 0} r^{-\lambda(x)} \int_{\widetilde{B}(x,r)} |f(y)|^{p(y)} dy < \infty.$$
(13)

The norm in the space $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ may be introduced in two forms,

$$||f||_1 = \inf \left\{ \eta > 0 : I_{p(\cdot),\lambda(\cdot)}\left(\frac{f}{\eta}\right) \le 1 \right\}$$

and

$$\|f\|_2 = \sup_{x \in \Omega, r > 0} \left\| r^{-\frac{\lambda(x)}{p(\cdot)}} f \chi_{\widetilde{B}(x,r)} \right\|_{p(\cdot)},$$

which actually coincide, as shown in Lemma 3. First we need the following lemma.

Lemma 2. For every $f \in L^{p(\cdot),\lambda(\cdot)}(\Omega)$, the inequalities

$$\|f\|_{i}^{p_{+}} \leq I_{p(\cdot),\lambda(\cdot)}(f) \leq \|f\|_{i}^{p_{-}} \quad if \quad \|f\|_{i} \leq 1,$$
(14)

$$\|f\|_{i}^{p_{-}} \leq I_{p(\cdot),\lambda(\cdot)}(f) \leq \|f\|_{i}^{p_{+}} \quad if \quad \|f\|_{i} \geq 1$$
(15)

are valid, i = 1, 2.

Proof. Let

$$F(x,r;\eta) = \frac{1}{r^{\lambda(x)}} \int_{B(x,r)} \left| \frac{f(y)}{\eta} \right|^{p(y)} dy.$$
(16)

For every $(x, r) \in \Omega \times (0, d_{\Omega})$, the function $F(x, r; \eta)$ is decreasing in $\eta \in (0, \infty)$. We have

$$\sup_{x \in \Omega, r > 0} F(x, r; 1) = I_{p(\cdot), \lambda(\cdot)}(f)$$
(17)

and by the definition of the norm $\|\cdot\|_1$,

$$\sup_{\mathbf{r}\in\Omega, r>0} F(x,r; \|f\|_1) = 1.$$
(18)

Then from (17)–(18), by the monotonicity of $F(x, r; \eta)$ in η , inequalities (14)–(15) with i = 1 follow. To cover the case i = 2, that is, the case of the norm

$$||f||_2 = \sup_{x \in \Omega, \ r > 0} ||g_{x,r}||_{p(\cdot)},$$

where $g_{x,r} = r^{-\frac{\lambda(x)}{p(\cdot)}} f \chi_{\widetilde{B}(x,r)}(\cdot)$, we make use of inequalities (2)–(3) of the $L^{p(\cdot)}$ -norm and have

$$||g_{x,r}||_{p(\cdot)}^{p_+} \le I_{p(\cdot)}(g_{x,r}) \le ||g_{x,r}||_{p(\cdot)}^{p_-} \text{ if } ||g_{x,r}||_{p(\cdot)} \le 1,$$

and similarly for the case $||g_{x,r}||_{p(\cdot)} \ge 1$. Taking the supremum with respect to x and r, we obtain (14)–(15) for i = 2.

Lemma 3. For every $f \in L^{p(\cdot),\lambda(\cdot)}(\Omega)$ we have

$$\|f\|_2 = \|f\|_1.$$

Proof. We note that

$$||f||_2 = \sup_{x \in \Omega, r > 0} \{\mu_{x,r} > 0 : F(x, r, \mu_{x,r}) = 1\},\$$

where $F(x,r;\eta)$ is function (16). From the equality $F(x,r;\mu_{x,r}) = 1$ and the inequality $F(x,r;||f||_1) \leq 1$ following from (18), by the monotonicity of the function $F(x,r;\eta)$ with respect to η , we conclude that

$$||f||_2 \le ||f||_1.$$

From relations (14) we easily derive

$$||f||_{1} \leq \begin{cases} ||f||_{2}^{\frac{p_{-}}{p_{+}}} & \text{if } ||f||_{1} \leq 1, \\ ||f||_{2} & \text{if } ||f||_{1} \geq 1, ||f||_{2} \leq 1, \\ ||f||_{2}^{\frac{p_{+}}{p_{-}}} & \text{if } ||f||_{1} \geq 1, ||f||_{2} \geq 1. \end{cases}$$

Substituting here $\frac{f}{\|f\|_2}$ instead of f, we obtain $\left\|\frac{f}{\|f\|_2}\right\|_1 \le 1$, that is, $\|f\|_1 \le \|f\|_2$, which completes the proof.

By the coincidence of the norms we put

$$||f||_{p(\cdot),\lambda(\cdot)} := ||f||_1 = ||f||_2.$$

Remark 1. When the open set Ω is bounded, the supremum defining the norm $\|\cdot\|_2$ is always reached for values of r less than d_{Ω} . Indeed, if $r \geq d_{\Omega}$ we have

$$\left\| r^{-\frac{\lambda(x)}{p(\cdot)}} f \chi_{\widetilde{B}(x,r)} \right\|_{p(\cdot)} \le \left\| d_{\Omega}^{-\frac{\lambda(x)}{p(\cdot)}} f \chi_{\widetilde{B}(x,d_{\Omega})} \right\|_{p(\cdot)}.$$

Lemma 5 below provides another equivalent norm on $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ when $|\Omega| < \infty$. Basically, it states that in case $\lambda(\cdot)$ is log-continuous, there is no difference in taking the parameter λ depending on x or y. Lemma 5 is an immediate consequence of the following simple lemma.

Lemma 4. Let Ω be a bounded open set and $\lambda(\cdot)$ satisfy the logarithmic condition

$$|\lambda(x) - \lambda(y)| \le \frac{A_{\lambda}}{-\ln|x - y|}, \quad |x - y| \le \frac{1}{2}, \quad x, y \in \Omega.$$
(19)

Then

$$\frac{1}{C}r^{-\lambda(y)} \le r^{-\lambda(x)} \le Cr^{-\lambda(y)} \tag{20}$$

for all $x, y \in \Omega$ such that $|x - y| \leq r$, with the constant $C = e^{A_{\lambda}}$ not depending on x, y and r.

Proof. Since the set Ω is bounded and $\lambda(\cdot)$ is a bounded function, it suffices to check (20) for small $r \leq 1$. It is easy to see that (20) is equivalent to

$$|\lambda(x) - \lambda(y)| \ln \frac{1}{r} \le C_1 := \ln C = A_\lambda, \tag{21}$$

which is valid since $\ln \frac{1}{r} \leq \ln \frac{1}{|x-y|}$.

Lemma 5. If Ω is bounded and $\lambda(\cdot)$ is log-Hölder continuous, then the functional

$$\|f\|_{3} := \sup_{x \in \Omega, r > 0} \left\| r^{-\frac{\lambda(\cdot)}{p(\cdot)}} f \chi_{\widetilde{B}(x,r)} \right\|_{p(\cdot)}$$
(22)

defines an equivalent norm in $L^{p(\cdot),\lambda(\cdot)}(\Omega)$.

The definitions above recover the classical Morrey spaces (see, for example, [17], Ch. 4), that is, $L^{p(\cdot),\lambda(\cdot)}(\Omega) = L^{p,\lambda}(\Omega)$ if $p(x) \equiv p$ and $\lambda(x) \equiv \lambda$ are constant. Furthermore, if $\lambda(x) \equiv 0$, then $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ coincides with the Lebesgue space $L^{p(\cdot)}(\Omega)$.

3.2. Embeddings of variable Morrey spaces. In Lemma 7 we prove embeddings of the Morrey spaces with variable $p(\cdot)$ and $\lambda(\cdot)$, known for constant exponents (see [17], Theorem 4.3.6 or [10], Ch. III, Proposition 1.1). To this end, we first need the estimate given in the following lemma which was obtained in [11] in the framework of general metric measure spaces setting; we give its another proof for the sake of completeness. This estimate serves better for our goals than the known ([6]) estimate $\|\chi_{\tilde{B}(x,r)}\|_{p(\cdot)} \leq |B(x,r)|^{\frac{1}{p}}$, with

$$\frac{1}{p_B} = \frac{1}{|B(x,r)|} \int\limits_{B(x,r)} \frac{dy}{p(y)}.$$

Lemma 6. Let Ω be a bounded open set in a metric measure space (X, d, μ) where the measure μ satisfies the lower Ahlfors condition $\mu B(x, r) \ge c r^{\delta}, \delta > 0$, and let $p(\cdot)$ satisfy the log-condition on Ω . Then

$$\left\|\chi_{\widetilde{B}(x,r)}\right\|_{p(\cdot)} \le C \left[\mu B(x,r)\right]^{\frac{1}{p(x)}}$$
(23)

with C > 0 not depending on $x \in \Omega$ and r > 0 (for small r one may take $C = e^{\frac{A\delta}{p_{-}^{2}}}$, where A > 0 is the constant from the log-condition).

Proof. Let $x \in \Omega$ and $0 < r < d_{\Omega}$. Since $p(\cdot)$ is log-Hölder continuous and the lower Ahlfors condition holds, it is easy to check that

$$\frac{1}{C}\mu B(x,r) \le [\mu B(x,r)]^{\frac{p(y)}{p(x)}} \le C\,\mu B(x,r)$$
(24)

for all $y \in \widetilde{B}(x,r)$, where $C \ge 1$ does not depend on x, y and r. Hence for $C_1 = C^{\frac{1}{p_-}}$ we have

$$\int_{\widetilde{B}(x,r)} \frac{d\mu(y)}{C_1^{p(y)} \left[\mu B(x,r)\right]^{\frac{p(y)}{p(x)}}} \leq \int_{\widetilde{B}(x,r)} \frac{d\mu(y)}{\mu B(x,r)} \leq 1.$$

$$\left\|\chi_{\widetilde{B}(x,r)}\right\|_{p(\cdot)} = \inf\left\{\eta > 0 : \int_{\widetilde{B}(x,r)} \eta^{-p(y)} d\mu(y) \le 1\right\} \le C_1 \left[\mu B(x,r)\right]^{\frac{1}{p(x)}}. \quad \Box$$

Lemma 7. Let Ω be bounded, $0 \leq \lambda(x) \leq n$ and $0 \leq \mu(x) \leq n$. If $p(\cdot)$ and $q(\cdot)$ are log-Hölder continuous, $p(x) \leq q(x)$ and

$$\frac{n-\lambda(x)}{p(x)} \ge \frac{n-\mu(x)}{q(x)},\tag{25}$$

then

$$L^{q(\cdot),\mu(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot),\lambda(\cdot)}(\Omega).$$
 (26)

Proof. Let $||f||_{q(\cdot),\mu(\cdot)} \leq 1$. This is equivalent to assuming that $I_{q(\cdot),\mu(\cdot)}(f) \leq 1$ (see Lemma 2). We have to show that $I_{p(\cdot),\lambda(\cdot)}(f) \leq C$ for some C > 0 not depending on f. Let $x \in \Omega$ and $r \in (0, d_{\Omega})$. Applying the Hölder inequality (6) with the exponent $p_1(x) = \frac{q(x)}{p(x)}$, we get

$$r^{-\lambda(x)} \int_{\widetilde{B}(x,r)} |f(y)|^{p(y)} dy \le 2 r^{-\lambda(x)} \left\| f^{p(\cdot)} \chi_{\widetilde{B}(x,r)} \right\|_{p_1(\cdot)} \left\| \chi_{\widetilde{B}(x,r)} \right\|_{p_1'(\cdot)}.$$
 (27)

By Lemma 6 we have

$$\chi_{\widetilde{B}(x,r)}\Big\|_{p_1'(\cdot)} \le C r^{n\left(1-\frac{p(x)}{q(x)}\right)}.$$
(28)

For the norm $\left\|f^{p(\cdot)}\chi_{\widetilde{B}(x,r)}\right\|_{p_1(\cdot)}$ we have the estimate

$$\left\| f^{p(\cdot)} \chi_{\widetilde{B}(x,r)} \right\|_{p_1(\cdot)} = \inf \left\{ \eta > 0 : \int_{\widetilde{B}(x,r)} |f(y)|^{q(y)} \eta^{-\frac{q(y)}{p(y)}} dy \le 1 \right\}$$
$$\le A^{p_+} r^{\mu(x) \frac{p(x)}{q(x)}}, \tag{29}$$

where A is the constant from the inequality

$$\frac{1}{A} r^{\frac{\mu(x)}{q(y)}} \le r^{\frac{\mu(x)p(x)}{q(x)p(y)}} \le A r^{\frac{\mu(x)}{q(y)}}$$
(30)

 $(A \ge 1 \text{ not depending on } x, y, r)$. Indeed, by (30),

$$\int_{\widetilde{B}(x,r)} \left(|f(y)| \left[A^{p_{+}} r^{\mu(x)\frac{p(x)}{q(x)}} \right]^{-\frac{1}{p(y)}} \right)^{q(y)} dy \leq \int_{\widetilde{B}(x,r)} \left(A^{-1} |f(y)| r^{-\frac{\mu(x)p(x)}{q(x)p(y)}} \right)^{q(y)} dy$$
$$\leq r^{-\mu(x)} \int_{\widetilde{B}(x,r)} |f(y)|^{q(y)} dy \leq 1$$

which proves (29). Making use of estimates (28) and (29) in (27), we get

$$\int_{\widetilde{B}(x,r)} |f(y)|^{p(y)} dy \le C r^{n-\lambda(x)-\frac{p(x)}{q(x)}[n-\mu(x)]}.$$

which is dominated by $r^{\mu(x)}$ under condition (25). Then $I_{p(\cdot),\lambda(\cdot)}(f) \leq c$, with c not depending on x and r. Therefore $||f||_{p(\cdot),\lambda(\cdot)} \leq C$ (see Lemma 2), which proves embedding (26).

To complete the proof, it remains to note that estimate (30) is a consequence of the log-Hölder continuity of $\frac{p(\cdot)}{q(\cdot)}$.

4. The Maximal Operator in Variable Exponent Morrey Spaces

Following the notation above we put $\lambda_+ := \operatorname{ess\,sup}_{x\in\Omega} \lambda(x)$. In the sequel we suppose that

$$0 \le \lambda(x) \le \lambda_+ < n, \quad x \in \Omega.$$
(31)

For the constant exponents $p(x) \equiv p$ and $\lambda(x) \equiv \lambda$ the following theorem was proved in [4].

Theorem 2. Let Ω be a bounded open set in \mathbb{R}^n . Under conditions (31), (8) and (9), the maximal operator M is bounded in the space $L^{p(\cdot),\lambda(\cdot)}(\Omega)$.

Proof. We have to show that

$$I_{p(\cdot),\lambda(\cdot)}(Mf) \le C \quad \text{for all } f \quad \text{with } \|f\|_{p(\cdot),\lambda(\cdot)} \le c, \tag{32}$$

where c > 0 and C = C(c) does not depend on f. We continue the function f by zero beyond the set Ω whenever necessary, and obtain

$$\int_{\widetilde{B}(x,r)} \left(Mf(y)\right)^{p(y)} dy = \int_{\mathbb{R}^n} \left(\left(Mf(y)\right)^{\frac{p(y)}{p_-}} \right)^{p_-} \chi_{\widetilde{B}(x,r)}(y) dy$$

Since Ω is bounded, $||f||_{p,\lambda} \ge c ||f||_p$ with some c > 0 depending only on d_{Ω} and λ_+ . Then the pointwise estimate (10) is applicable, which yields

$$\int_{\widetilde{B}(x,r)} \left[Mf(y)\right]^{p(y)} dy \le C \left(\int_{\Omega} \left[M \left(\left| f(\cdot) \right|^{\frac{p(\cdot)}{p_{-}}} \right) \right]^{p_{-}} \chi_{\widetilde{B}(x,r)}(y) \, dy + \int_{\Omega} \chi_{\widetilde{B}(x,r)}(y) \, dy \right).$$

By the Fefferman–Stein inequality (for constant $p \in (1, \infty)$)

$$\int_{\mathbb{R}^n} (Mg)(y)^p h(y) \, dy \le \int_{\mathbb{R}^n} g(y)^p \, (Mh)(y) \, dy,$$

valid for all non-negative functions g, h (see [9]), we get

$$\int_{\widetilde{B}(x,r)} \left(Mf(y)\right)^{p(y)} dy \le C\left(\int_{\Omega} |f(y)|^{p(y)} M\chi_{\widetilde{B}(x,r)}(y) \, dy + r^n\right).$$

The following estimate is known

$$M\chi_{B(x,r)}(y) \le \frac{4^n r^n}{(|x-y|+r)^n}, \quad x,y \in \mathbb{R}^n, \quad r > 0,$$

see [3], Lemma 2. Therefore

$$\int_{\widetilde{B}(x,r)} (Mf(y))^{p(y)} dy$$

$$\leq C \left(\int_{\widetilde{B}(x,2r)} |f(y)|^{p(y)} dy + \sum_{j=1}^{\infty} \int_{\widetilde{B}(x,2^{j+1}r) \setminus \widetilde{B}(x,2^{j}r)} \frac{r^n |f(y)|^{p(y)}}{(|x-y|+r)^n} dy + r^n \right)$$

$$\leq C \left(r^{\lambda(x)} + \sum_{j=1}^{\infty} \frac{(2^{j+1}r)^{\lambda(x)}}{(2^j+1)^n} + r^n \right) \leq C \left(r^{\lambda(x)} + r^n \right) \leq C r^{\lambda(x)},$$

which proves the uniform estimate $I_{p(\cdot),\lambda(\cdot)}(f) \leq C$ and completes the proof. \Box

Let M^{\sharp} be the sharp maximal function defined by

$$M^{\sharp}f(x) := \sup_{r>0} \frac{1}{|B(x,r)|} \int_{\tilde{B}(x,r)} \left| f(y) - f_{\tilde{B}(x,r)} \right| \, dy$$

where

$$f_{\widetilde{B}(x,r)} = \frac{1}{|\widetilde{B}(x,r)|} \int_{\widetilde{B}(x,r)} f(z) \, dz$$

is the mean value of f over $\widetilde{B}(x,r)$. From the boundedness of the maximal operator M and the pointwise inequality

$$M^{\sharp}f(x) \le 2Mf(x), \quad x \in \Omega,$$

we can derive the following statement.

Corollary 1. Under the same conditions of Theorem 2, the sharp maximal operator M^{\sharp} is bounded in $L^{p(\cdot),\lambda(\cdot)}(\Omega)$.

5. POTENTIAL OPERATORS IN VARIABLE MORREY SPACES

Below we need to assume that $\alpha(\cdot)$ also satisfies the log-condition

$$|\alpha(x) - \alpha(y)| \le \frac{C}{-\ln|x-y|}, \ |x-y| \le \frac{1}{2}, \ x, y \in \Omega.$$
 (33)

The next theorem in the case of constant p and α was proved in [1].

Theorem 3. Let Ω be bounded. Under conditions (8), (9), (33) and the conditions

$$\inf_{x \in \Omega} \alpha(x) > 0, \quad \sup_{x \in \Omega} \left[\lambda(x) + \alpha(x)p(x) \right] < n, \tag{34}$$

the operator $I^{\alpha(\cdot)}$ is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $L^{q(\cdot),\lambda(\cdot)}(\Omega)$, where $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{\alpha(x)}{n-\lambda(x)}$.

Proof. Let $||f||_{p(\cdot),\lambda(\cdot)} \leq 1$. As always, we continue the function f by zero beyond the set Ω . We use the standard decomposition

$$I^{\alpha(\cdot)}f(x) = \left(\int\limits_{B(x,2r)} + \int\limits_{\mathbb{R}^n \setminus B(x,2r)} \right) f(y)|x-y|^{\alpha(x)-n}dy =: F(x,r) + G(x,r).$$
(35)

The pointwise estimate

$$|F(x,r)| \le C r^{\alpha(x)} M f(x) \tag{36}$$

with a constant C > 0 not depending on f and x is well known in the case of constant α and is also valid for variable $\alpha(\cdot)$, under the condition $\inf_{x \in \Omega} \alpha(x) > 0$ (see [20], formula (56)). For G(x, r) we have

$$|G(x,r)| \le C \sum_{j=1}^{\infty} \int_{\widetilde{B}(x,2^{j+1}r)\setminus \widetilde{B}(x,2^{j}r)} |f(y)| (2^{j}r)^{-\frac{\lambda(x)}{p(y)}} |x-y|^{\alpha(x)-n+\frac{\lambda(x)}{p(y)}} dy,$$

where the series turns out to be a finite sum $\sum_{j=1}^{N}$ for any fixed r > 0, with N = N(r) tending to infinity as $r \to 0$. Since the set Ω is bounded and $p(\cdot)$ satisfies the log-condition, we also have

$$|G(x,r)| \le C \sum_{j=1}^{\infty} \int_{\widetilde{B}(x,2^{j+1}r)\setminus\widetilde{B}(x,2^{j}r)} |f(y)| (2^{j}r)^{-\frac{\lambda(x)}{p(y)}} |x-y|^{\alpha(x)-n+\frac{\lambda(x)}{p(x)}} dy.$$
(37)

Applying the Hölder inequality, we get

$$|G(x,r)| \le C \sum_{j=1}^{\infty} \left\| |x-y|^{\alpha(x)-n+\frac{\lambda(x)}{p(x)}} \right\|_{p'(\cdot),\mathbb{R}^n \setminus B(x,2^j r)} \left\| (2^j r)^{-\frac{\lambda(x)}{p(\cdot)}} f \right\|_{p(\cdot),B(x,2^{j+1}r)}.$$
 (38)

The factor $\left\| (2^{j}r)^{-\frac{\lambda(x)}{p(\cdot)}}f \right\|_{p(\cdot),B(x,2^{j+1}r)}$ is uniformly bounded. Indeed, to see this, in view of (4)–(5) it suffices to show the boundedness of the corresponding modular, i.e. that

$$I_{p(\cdot)}\left((2^{j}r)^{-\frac{\lambda(x)}{p(\cdot)}}f\chi_{(B(x,2^{j+1}r)}\right) \le C < \infty$$

which is valid, since

$$I_{p(\cdot)}\left((2^{j}r)^{-\frac{\lambda(x)}{p(\cdot)}}f\chi_{(B(x,2^{j+1}r)}\right) \leq (2^{j+1}r)^{-\lambda(x)}\int_{B(x,2^{j+1}r)}|f(y)|^{p(y)}\,dy \leq C < \infty$$

by the definition in (13). Therefore, from (38), by Theorem 1 we obtain

$$|G(x,r)| \le C_1 \sum_{j=1}^{\infty} (2^j r)^{\alpha(x) - \frac{n - \lambda(x)}{p(x)}} \le C_2 r^{\alpha(x) - \frac{n - \lambda(x)}{p(x)}},$$
(39)

where the series defining $C_2 = C_1 \sum_{j=1}^{\infty} 2^{-aj}$, $a = \frac{1}{p_+} \inf_{x \in \Omega} [n - \lambda(x) - \alpha(x)p(x)] > 0$, is convergent.

Thus, from (36) and (39) we have

$$\left|I^{\alpha(\cdot)}f(x)\right| \le C r^{\alpha(x)} M f(x) + C_2 r^{\alpha(x) - \frac{n - \lambda(x)}{p(x)}}.$$

Minimizing with respect to r, at $r = (Mf(x))^{-\frac{p(x)}{n-\lambda(x)}}$ we get

$$\left|I^{\alpha(\cdot)}f(x)\right| \le c \left(Mf(x)\right)^{\frac{p(x)}{q(x)}}.$$

Hence, by Theorem 2, we have

$$\int_{\widetilde{B}(x,r)} \left| I^{\alpha(\cdot)} f(y) \right|^{q(y)} dy \le c \int_{\widetilde{B}(x,r)} \left(M f(y) \right)^{p(y)} dy \le c r^{\lambda(x)},$$

which completes the proof of the theorem.

The statement of the following corollary in the case of constant exponents p, λ and α is known, see [8], Lemma 4, and [2], Corollary 4.4. Note that in the case of constant p, λ and α , the norm equivalence of $I^{\alpha}f$ and $M^{\alpha}f$ in Morrey spaces is also known, see [2].

Corollary 2. Under the assumptions of Theorem 3 the fractional maximal operator $M^{\alpha(\cdot)}$ is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $L^{q(\cdot),\lambda(\cdot)}(\Omega)$.

Proof. The result follows from Theorem 3 in view of the pointwise estimate

$$M^{\alpha(\cdot)}f(x) \le c I^{\alpha(\cdot)}(|f|)(x), \quad 0 < \alpha(x) < n,$$

$$\tag{40}$$

where c > 0 does not depend on f and x. This inequality, well known for constant α , is also valid for variable $\alpha(x)$ with

$$c = \sup_{x \in \Omega} \left(\frac{n}{|\mathbb{S}^{n-1}|} \right)^{1 - \frac{\alpha(x)}{n}} < \infty,$$

where \mathbb{S}^{n-1} is the unit sphere in \mathbb{R}^n . To prove (40), we observe that $I^{\alpha(\cdot)}(|f|)(x) \ge \int_{\widetilde{B}(x,r)} \frac{|f(y)| \, dy}{|x-y|^{n-\alpha(x)}}$ for any $x \in \Omega$ and r > 0. Since $|B(x,r)| = \frac{|\mathbb{S}^{n-1}|}{n}r^n$, we have

$$\frac{1}{|B(x,r)|^{1-\frac{\alpha(x)}{n}}} \int_{\widetilde{B}(x,r)} |f(y)| dy \le \left(\frac{n}{|\mathbb{S}^{n-1}|}\right)^{1-\frac{\alpha(x)}{n}} \int_{\widetilde{B}(x,r)} \frac{|f(y)|}{|x-y|^{n-\alpha(x)}} dy,$$

whence (40) follows.

The following statement holds by Theorem 3 and embedding (26).

Theorem 4. Let the set Ω be bounded and $p(\cdot)$ satisfy conditions (8) and (9). Assume also that $\alpha(\cdot)$ and $\lambda(\cdot)$ are log-Hölder continuous and condition (34) is satisfied. Then the operator $I^{\alpha(\cdot)}$ is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $L^{q(\cdot),\mu(\cdot)}(\Omega)$,

where $q(\cdot)$ is any exponent satisfying log-condition (9) and the condition $1 \leq q(x) \leq \frac{p(x)[n-\lambda(x)]}{n-[\lambda(x)+\alpha(x)p(x)]}$, and $\mu(\cdot)$ is defined by the condition

$$\frac{n-\mu(x)}{q(x)} = \frac{n-\lambda(x)}{p(x)} - \alpha(x).$$

In particular, one may take

$$\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{\alpha(x)}{n} \quad and \quad \mu(x) = \frac{n\lambda(x)}{n - \alpha(x)p(x)}.$$
(41)

For constant exponents the statement of Theorem 4 in the case of (41) may be found, for example, in [4] (see Corollary on page 277).

Similarly to Corollary 2 we derive the following result.

Corollary 3. Under the assumptions of Theorem 4, the fractional maximal operator $M^{\alpha(\cdot)}$ is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $L^{q(\cdot),\mu(\cdot)}(\Omega)$.

6. POTENTIAL OPERATORS: THE LIMITING CASE

In this section we study the limiting case in (34), that is, we consider the critical exponent

$$p(x) = \frac{n - \lambda(x)}{\alpha(x)}.$$
(42)

Theorem 5. Let Ω be bounded, $p(\cdot)$ satisfy conditions (8), (9) and $\inf_{x \in \Omega} \alpha(x) > 0$. In the case of exponent (42) the operator $M^{\alpha(\cdot)}$ is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $L^{\infty}(\Omega)$:

$$\|M^{\alpha(\cdot)}f\|_{\infty} \le C \|f\|_{p(\cdot),\lambda(\cdot)}.$$
(43)

Proof. Let $x \in \Omega$ and r > 0. By the log-condition, property (20), the Hölder inequality and estimate (23), we get successively

$$\begin{split} |B(x,r)|^{\frac{\alpha(x)}{n}-1} & \int_{\widetilde{B}(x,r)} |f(y)| \, dy = |B(x,r)|^{\frac{\alpha(x)}{n}-1} \int_{\widetilde{B}(x,r)} r^{\frac{\lambda(x)}{p(y)}} r^{-\frac{\lambda(x)}{p(y)}} |f(y)| \, dy \\ & \leq C \, |B(x,r)|^{\frac{\alpha(x)}{n}-1} r^{\frac{\lambda(x)}{p(x)}} \int_{\widetilde{B}(x,r)} r^{-\frac{\lambda(x)}{p(y)}} |f(y)| \, dy \\ & \leq C r^{\alpha(x)-n+\frac{\lambda(x)}{p(x)}} \left\| r^{-\frac{\lambda(x)}{p(\cdot)}} f \, \chi_{\widetilde{B}(x,r)} \right\|_{p(\cdot)} \left\| \chi_{\widetilde{B}(x,r)} \right\|_{p'(\cdot)} \\ & \leq C \, r^{\alpha(x)-n+\frac{\lambda(x)}{p(x)}} \, \|f\|_{p(\cdot),\lambda(\cdot)} \, |B(x,r)|^{\frac{1}{p'(x)}} \leq C \, \|f\|_{p(\cdot),\lambda(\cdot)}. \quad \Box \end{split}$$

Remark 2. Since the set Ω is bounded, inequality (43) obviously holds also in the super-critical case $p(x) > \frac{n-\lambda(x)}{\alpha(x)}$.

In the limiting situation, the mapping properties of the Riesz potential operator $I^{\alpha(\cdot)}$ and the fractional maximal operator $M^{\alpha(\cdot)}$ are slightly different. For constant exponents, it is well known that a result similar to Theorem 5 holds for I^α only if we replace $L^\infty(\Omega)$ by the space $BMO=\{f:M^\sharp f\in L^\infty\}$ equipped with the norm

$$||f||_{BMO} := ||M^{\sharp}f||_{\infty}$$

(supposing that we do not distinguish functions differing by a constant).

The similar $L^{p(\cdot),\lambda(\cdot)} \to BMO$ -boundedness holds also in the variable exponent setting. In the case of constant exponents this was proved by S. Spanne and published in [19] (see Theorem 5.4 in [19]). To extend this boundedness to the case of variable $p(\cdot)$ and $\lambda(\cdot)$ we make use of the pointwise estimate (see [1], Proposition 3.3)

$$M^{\sharp}(I^{\alpha}f)(x) \le c M^{\alpha}f(x), \quad x \in \Omega.$$
(44)

Then from (44) and Theorem 5 the following statement follows immediately.

Theorem 6. Let $\lambda(x) \geq 0$, $0 < \alpha < n$, $\sup_{x \in \Omega} \lambda(x) < n - \alpha$, and let $p(x) = \frac{n-\lambda(x)}{\alpha}$. Then under condition (9) the operator I^{α} is bounded from $L^{p(\cdot),\lambda(\cdot)}(\Omega)$ to $BMO(\Omega)$.

Remark 3. Within the framework of variable exponent spaces the result of Theorem 6 seems to be new even in the case of variable Lebesgue spaces, that is, in the case, where $\lambda(x) \equiv 0$.

Acknowledgements

The first and third named authors were supported by the INTAS grant Ref. Nr. 06-1000017-8792 through the project "Variable Exponent Analysis". The second author was partially supported by the INTAS grant Ref. Nr. 06-1000015-5635.

References

- 1. D. R. ADAMS, A note on Riesz potentials. Duke Math. J. 42(1975), 765–778.
- D.R. ADAMS and J. XIAO, Nonlinear potential analysis on Morrey spaces and their capacities. *Indiana Univ. Math. J.* 53(2004), No. 6, 1629–1663.
- V. I. BURENKOV and H. V. GULIYEV, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces. *Studia Math.* 163(2004), No. 2, 157–176.
- F. CHIARENZA and M. FRASCA, Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7(1987), No. 3-4, 273–279 (1988).
- L. DIENING, Maximal functions on generalized Lebesgue spaces L^{p(·)}. Math. Inequal. Appl. 7(2004), No. 2, 245–253.
- 6. L. DIENING, Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$. Math. Nachr. **268**(2004), No. 1, 31–43.
- L. DIENING, P. HÄSTÖ and A. NEKVINDA, Open problems in variable exponent Lebesgue and Sobolev spaces. In: *"Function Spaces, Differential Operators and Nonlinear Analy*sis", Proc. Int. Conference held in Milovy, Bohemian-Moravian Uplands, May 28 – June 2, 2004. *Math. Inst. Acad. Sci. Czech Republic*, Prague, 2005, pp. 38–58.
- G. DI FAZIO and M. A. RAGUSA, Commutators and Morrey spaces. Boll. Un. Mat. Ital. A (7) 5(1991), No. 3, 323–332.

- C. FEFFERMANN and E. STEIN, Some maximal inequalities. Amer. J. Math. 93(1971), 107–115.
- M. GIAQUINTA, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
- P. HARJULEHTO, P. HÄSTÖ and V. LATVALA, Sobolev embeddings in metric measure spaces with variable dimension. *Math. Z.* 254(2006), No. 3, 591–609.
- V. KOKILASHVILI, On a progress in the theory of integral operators in weighted Banach function spaces. In: *"Function Spaces, Differential Operators and Nonlinear Analysis"*, Proc. Int. Conference held in Milovy, Bohemian-Moravian Uplands, May 28 – June 2, 2004. *Math. Inst. Acad. Sci. Czech Republic*, Prague, 2005, pp. 152–175.
- V. KOKILASHVILI and S. SAMKO, On Sobolev Theorem for Riesz-type potentials in Lebesgue spaces with variable exponents. Z. Anal. Anwendungen 22(2003), No. 4, 899–910.
- 14. V. KOKILASHVILI and S. SAMKO, Maximal and fractional operators in weighted $L^{p(x)}$ spaces. *Rev. Mat. Iberoamericana* **20**(2004), No. 2, 493–515.
- 15. V. KOKILASHVILI and S. SAMKO, Maximal and fractional operators in weighted $L^{p(x)}$ sapces. *Proc. A. Razmadze Math. Inst.* **129**(2002), 145–149.
- 16. O. KOVĂCĬK and J. RÁKOSNĬK, On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41(116)(1991), 592–618.
- A. KUFNER, O. JOHN and S. FUČÍK, Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977.
- C. B. MORREY, On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1938), 126–166.
- 19. J. PEETRE, On the theory of $\mathcal{L}_{p,\lambda}$ spaces. J. Funct. Anal. 4(1969), 71–87.
- 20. S. G. SAMKO, Convolution and potential type operators in the space $L^{p(x)}$. Integral Transform. Spec. Funct. 7(1998), No. 3-4, 261–284.
- S. SAMKO, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, *Integral Transform. Spec. Funct.* 16(2005), No. 5-6, 461–482.
- 22. I. I. SHARAPUDINOV, The topology of the space $\mathcal{L}^{p(t)}([0,1])$. Mat. Zametki 26(1979), No. 3-4, 613–632.

(Received 14.09.2007)

Authors' addresses:

A. Almeida
Department of Mathematics, University of Aveiro
3810-193 Aveiro, Portugal
E-mail: jaralmeida@ua.pt
J. Hasanov
Institute of Mathematics and Mechanics
Baku, Azerbaijan
E-mail: hasanovjavanshir@yahoo.com.tr
S. Samko
Department of Mathematics, University of Algarve
Campus de Gambelas, 8005-139 Faro, Portugal

E-mail: ssamko@ualg.pt