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1. Introduction

A well known theorem of Krasnosel’skĭı, see [12,13], states that if a linear integral
operator K0 with a positive kernel K0(x, y) is compact in Lp, then the same is valid
for any linear integral operator with the kernel K(x, y) satisfying the condition

|K(x, y)| ≤ K0(x, y) . (1.1)

In relation with various questions of operator theory within the frameworks of
variable exponent Lebesgue spaces Lp( · )(Ω, �) there arose a necessity of extension
of Krasnosel’skĭı’s theorem to the case of weighted variable exponent Lebesgue
spaces Lp( · )(Ω, �). We refer to surveying papers [6, 8, 18] on operator theory and
harmonic analysis in such spaces in general, and to the paper [9] where the com-
pactness of potential operators in variable exponent spaces was proved.

Observe that a study of compactness of operators in variable exponent Le-
besgue spaces Lp( · )(Ω, �) may be made also via interpolation of the property of
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compactness, at the least in non-weighted case. An extension of the well-known
theorem of M. A. Krasnosel’skĭı [11] on the interpolation of the compactness prop-
erty in Lp-spaces to the case of variable p(x) was proved in [17].

In some applications, Krasnosel’skĭı type theorem on compactness, based on
straightforward comparison (1.1) of kernels, is more direct. We give an extension
of this Krasnosel’skĭı’s theorem in the context of more general setting of Banach
function spaces (BFS). We refer to [2] for BFS. Note that the study of various
problems related to compactness of operators in Banach function spaces has a
long history, we refer e.g. to the paper [16] and books [15, 20].

As a corollary, we obtain such an extension for variable exponent spaces
Lp( · )(Ω, �) with a power type weight. The latter is used to show the compactness
of potential type operators in these spaces.

The main results, at the least from the point of view of further applications,
are given in Section 4, in Theorems 4.1 and 4.5, in terms of weighted generalized
Lebesgue spaces Lp( · )(Ω, �) with variable exponent. However, Theorem 4.1 is ob-
tained as a corollary to a more general Theorem 3.12 (dominated compactness
theorem), proved in Section 3 for arbitrary Banach function spaces, for which the
dual and associate spaces coincide. Section 2 contains necessary preliminaries.

The authors are thankful to the anonymous referee who called their attention
to the paper [14] on the difference between continuous and absolutely continuous
norms in Banach function space, and his comments which helped to improve the
presentation in the paper.

2. Preliminaries

Let (Ω, μ) be a measure space and M(Ω, μ) a space of measurable functions on Ω.

Definition 2.1 ([2]). A normed linear space X = (X(Ω, μ), ‖ · ‖X) of functions f :
Ω → R

1 is called a Banach function space if the following conditions are satisfied:
(P1) the norm ‖f‖X (0 ≤ ‖f‖X ≤ ∞) is defined for all f ∈ M(Ω, μ);
(P2) ‖f‖X = 0 if and only if f(x) = 0 μ-a.e. on Ω;
(P3) ‖f‖X = ‖|f |‖X for all f ∈ X;
(P4) if E ⊂ Ω with μE <∞, then ‖χE‖X <∞;
(P5) if fn ∈ M(Ω, μ) and 0 ≤ fn ↑ f μ-a.e. on Ω, then

‖fn‖X ↑ ‖f‖X ,

(strong Fatou property);
(P6) given E ⊂ Ω with μE <∞, there exists a positive constant CE such that∫

E

|f(x)|dμ(x) ≤ CE‖f‖X .

The fundamentals of Banach function spaces can be found in [2].
In what follows, the set Ω will be always assumed to be a finite measure set,

i.e., μ(Ω) <∞.
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The property of Banach function spaces given in Lemma 2.2 is known, see [2,
p. 6 and 4], its proof being direct: let f∞ = s-lim fn, then by (P6) we have

μ
({
x ∈ Ω : |f∞(x) − fn(x)| > ε

}) ≤ 1
ε

∫
Ω

|f∞(x) − fn(x)|dμ(x)

≤ CΩ

ε
‖f∞ − fn‖X → 0 as n→ ∞ .

Lemma 2.2. Let X be a Banach function space with μΩ <∞. Then strong conver-
gence implies convergence in measure.

Definition 2.3. We say that a function f ∈ X possesses absolutely continuous norm,
if

lim
μ(D)→0

‖PDf‖ = 0

where

PDf(x) =
{
f(x), x ∈ D ;
0, x /∈ D .

By Xa we denote the set of all f ∈ X which have absolutely continuous norm.
Observe that in the case Xa 	= X, the space Xa is not a Banach function space, as
shown in [14] (in [14] it is shown that any (closed) subspace of a Banach function
space is not a Banach function space). In the case Xa = X we say that the space X
has absolutely continuous norm.

Lemma 2.4 ([2, p. 16]). The set Xa is a closed subspace of X.

Definition 2.5 ([2]). We define the associate space X′ of a Banach function space X
as the set of all measurable functions g ∈ M(Ω, μ) such that the following norm
is finite

‖g‖X′ = sup
{∫

Ω

|fg|dμ : f ∈ X, ‖f‖X ≤ 1
}
. (2.1)

Lemma 2.6 ([2]). The dual Banach space X∗ of a Banach function space X is
isometrically isomorphic to the associate space X′ if and only if Xa = X.

3. Dominated compactness theorem in Banach function spaces

3.1. General preliminaries

Definition 3.1. A family X of functions in the space X is said to have equi-absolutely
continuous norms, if for any ε > 0 there exists δ(ε) > 0 such that μ(D) < δ(ε)
implies the inequality ‖PDf‖X < ε for all f ∈ X .

Definition 3.2. A bounded linear operator T : X → Y is compact in measure if the
image {Tun} of any bounded sequence {un} of X contains a Cauchy subsequence
with respect to measure, i.e., if ‖un‖X ≤ C, then there exists a subsequence {unk

}
such that ∀ε > 0, ∀δ > 0, there exists an N(ε, δ) such that

μY

({
s ∈ Ω : |Tunk

(s) − Tumk
(s)| > ε

})
< δ for all nk,mk > N(ε, δ) .
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The following theorem is a kind of version of the known statements from [16]
and [13], see also [2, p. 31]. We give its proof for the completeness of the presen-
tation.

Theorem 3.3. Let X and Y be Banach function spaces and T a bounded linear
operator acting from Y into Xa. The operator T is compact if and only if it is
compact in measure and the set {Tf : ‖f‖Y ≤ 1} has equi-absolutely continuous
norms.

Proof. Let T be compact. By Lemma 2.2, we only need to check the equi-absolute
continuity of the norm in the set {Tf : ‖f‖Y ≤ 1}. Assume, to the contrary, that
there exists a sequence of fn ∈ Y belonging to the unit ball and a sequence of
sets Dn ⊂ Ω such that μ(Dn) → 0 when n → ∞ and ‖PDnTfn‖X ≥ ε0 > 0 for
all n. By the compactness of T , there exists a subsequence {fnk

} of {fn} such
that ‖Tfnk

− g‖X → 0 when n → ∞, with g ∈ X, thus ‖Tfnk
− g‖X < ε0/2 for

nk > N1. By the fact that each function Tfn has the absolutely continuous norm,
by Lemma 2.4 g has absolutely continuous norm as well, thus ‖PDng‖X < ε0/2 for
n > N2. Then for nk > max{N1, N2}, we have ‖PDnk

Tfnk
‖X < ε0 arriving at a

contradiction.
Let now T be compact in measure and the set {Tf : ‖f‖Y ≤ 1} have equi-

absolutely continuous norms. Given ε > 0, define ε0 as 0 < ε0 < ε/(2 + μΩ). For
any such ε0 > 0, by the equi-absolute continuity of norms, there exists δ(ε0) > 0
such that for all the sets D with μ(D) < δ(ε0) we have ‖PDTf‖X < ε0 whenever f
belongs to the unit ball of Y. Let ‖fn‖X ≤ 1. We denote En,m(ε) = {s ∈ Ω :
|Tfn(s) − Tfm(s)| > ε}. By the compactness in measure of the operator T , there
exists {fnk

} and N(ε0, δ(ε0)) such that

μ
(
Enk,mk

(ε0)
)
< δ(ε0) when nk,mk > N

(
ε0, δ(ε0)

)
.

Then we have

‖Tfnk
− Tfmk

‖X ≤ ‖PEnk,mk
(ε0)(Tfnk

− Tfmk
)‖X

+ ‖PΩ\Enk,mk
(ε0)(Tfnk

− Tfmk
)‖X

≤ ‖PEnk,mk
(ε0)Tfnk

‖X + ‖PEnk,mk
(ε0)Tfmk

‖X + ε0μΩ

≤ ε0(2 + μΩ)
< ε

which proves the compactness of T . �

Theorem 3.4. Let X and Y be Banach function spaces and T be a bounded linear
operator acting from Y to Xa. The operator T is compact if and only if it is compact
in measure and

lim
μ(D)→0

‖PDT ‖Y→X = 0 . (3.1)

Proof. “If” part. By (3.1) the range of operator T on each ball has equi-absolutely
continuous norms. Then the result follows from Theorem 3.3.
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“Only if” part. By Theorem 3.3, T is compact in measure. Suppose, to the
contrary, that (3.1) is not valid. Then there exists a sequence {fn} of functions
with ‖fn‖Y ≤ 1 and a sequence of sets Dn with measure converging to zero as
n→ ∞ such that

‖PDnTfn‖X ≥ ε0 > 0 , ∀n ∈ N , (3.2)

which contradicts the equi-absolutely continuity of the norms of the elements {Tf :
‖f‖Y ≤ 1}. �

3.2. Regular operators

In this section, when extending the Krasnosel’skĭı theorem on compactness of
regular integral operators in Lp to the case of arbitrary Banach function spaces,
we mainly follow ideas of book [13]. We consider linear integral operators of the
form

Kf(x) =
∫

Ω

K(x, y)f(y)dμ(y) (3.3)

where it is always assumed that the kernel K(x, y) is measurable and integrable
in y on Ω for almost all x ∈ Ω.

Definition 3.5. An operator K acting from a space X into a space Y is called a
regular linear integral operator from X to Y, if the operator |K| defined by

|K|f(x) :=
∫

Ω

|K(x, y)|f(y)dμ(y)

is bounded from X to Y.

Definition 3.6. Let Ψ be a linear subspace of the space X∗. A sequence {xn} ∈ X
is called Ψ-weakly convergent, if, for each ψ ∈ Ψ, the sequence {ψ(xn)} converges.

Lemma 3.7. Let Ψ be a linear subspace of X∗. If Ψ is separable, then X is Ψ-weakly
compact.

Proof. We wish to prove that given {fn} with ‖fn‖ ≤ 1, there exists a subsequence
{fnk

} such that {ψ(fnk
)} is a Cauchy sequence, where ψ ∈ Ψ.

Such a subsequence may be constructed inductively, basing on the fact that Ψ
is separable, so that it has a countable dense set

Φ = {ϕ1, ϕ2, ϕ3, . . . , ϕn, . . .} .
First, we note that given a linear functional ψ ∈ X∗ and a sequence {fn} in the
unit ball of X, there exists a subsequence {fnk

} such that {ψ(fnk
)} is convergent.

(Just note that the set {ψ(fnk
)} is a bounded set of R

1 and use the Bolzano–
Weierstraß theorem). Then from {fn} we can find {f1

n} such that {ϕ1(f1
n)} con-

verges. From {f1
n} we find a subsequence {f2

n} such that {ϕ2(f2
n)} converges and

similarly, we can find {fk
n}, a subsequence of {fk−1

n }, such that {ϕk(fk
n)} con-

verges, ad infinitum; by Cantor diagonal process we choose the subsequence {κn},
i.e., {κn} = {fn

n}. Note that, for any ϕk ∈ Φ, {ϕk(κn)} is convergent.
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Finally, given ε > 0 choose from Φ an appropriate ϕN such that ‖ψ−ϕN‖ <
ε/3, and an appropriateM such that n,m > M implies |ϕN (κn)−ϕN(κm)| < ε/3,
then we have:

|ψ(κn) − ψ(κm)| ≤ |ψ(κn) − ϕN (κn)| + |ϕN (κn) − ϕN (κm)|
+ |ϕN (κm) − ψ(κm)|

< 2‖ψ − ϕN‖ + ε/3
< ε . �

Corollary 3.8. The space L∞(Ω, μ) is L1-weakly compact.

Proof. Indeed, it suffices to mention that L1(Ω, μ), a subspace of L∗∞(Ω, μ), is
separable. �
Theorem 3.9. A regular linear integral operator K acting from L∞ into a space Xa

is compact.

Proof. Let u(x) =
∫
Ω |K(x, y)|dμ(y). Since K is a regular operator from L∞ into

Xa, we have u ∈ Xa. Then |K|f(x) ≤ u(x)‖f‖∞ for all f ∈ L∞. By the properties
of the norm, we obtain

‖PDK‖L∞→X ≤ ‖PDu‖X

thus proving that
lim

μ(D)→0
‖PDK‖L∞→X = 0 . (3.4)

For almost all x ∈ Ω, the functional

Fx(f) =
∫

Ω

K(x, y)f(y)dμ(y)

is a continuous linear functional on L∞ for those x when u(x) is finite. Since L∞
is L1-weakly compact by Corollary 3.8, from each bounded sequence {fn} in L∞
there may be derived a subsequence {fnk

} such that Fx(fnk
) converges for almost

all x ∈ Ω, that is, the sequence of numbers Kfnk
(x) converges, which implies that K

transforms each ball in L∞ into a set of functions compact in measure. By (3.4)
and the compactness in measure, the result follows from Theorem 3.4. �
Theorem 3.10. Let X = Xa. A regular linear integral operator K acting from a
space X into L1 is compact.

Proof. By the Schauder theorem on the compactness of the dual operator, see [5,
19], the required compactness is equivalent to the compactness of the operator K

∗

from L∞ to X∗ = X′. According to Theorem 3.9, it suffices to check that the
operator K

∗ acts boundedly from L∞ to (X′)a. This is valid, if the operator K is
bounded from [(X′)a]∗ to L1. The latter holds by the assumption of the theorem,
since it is known that [(X′)a]∗ = (X′)′, see [2, p. 23, Corollary 4.2], and X′′ = X,
see [2, p. 10, Theorem 2.7]. �
Theorem 3.11. Let X = Xa. A regular linear integral operator K acting from a
space X into a space Ya is compact in measure.
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Proof. This follows from the fact that K acts from Xa into L1. Then by Theo-
rem 3.10, the operator is compact and therefore, it is compact in measure. �

Let

K0f(x) =
∫

Ω

K0(x, y)f(y)dμ(y) , K0(x, y) ≥ 0 . (3.5)

In the case
|K(x, y)| ≤ K0(x, y) , (x, y) ∈ Ω × Ω , (3.6)

we say that the operator K0 is a majorant of the operator K.

Theorem 3.12. Let X = Xa. Let condition (3.6) be fulfilled and suppose that the
operator K0 acts from a space X into a space Ya and is compact. Then K is also a
compact operator acting from X into Ya.

Proof. We have

lim
μ(D)→0

‖PDK‖X→Y = lim
μ(D)→0

sup
‖f‖X≤1

‖PDKf‖Y

≤ lim
μ(D)→0

sup
‖f‖X≤1

‖PDK0(|f |)‖Y

≤ lim
μ(D)→0

‖PDK0‖X→Y = 0 .

Then the operator K is compact in measure by Theorem 3.11. Therefore, its
compactness follows from Theorem 3.4. �

4. Application to variable exponent Lebesgue spaces

Let Ω be an open set in R
n and dμ(x) = dx the Lebesgue measure. The variable

exponent Lebesgue space Lp( · )(Ω), where 1 ≤ ess infx∈Ω p(x) ≤ ess supx∈Ω p(x) <
∞, is the set of functions for which the following modular

Ip(f) :=
∫

Ω

|f(x)|p(x)dx

is finite. This is a Banach function space with respect to the norm

‖ f ‖p( · )= inf
{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

see [7]. The modular Ip(f) and the norm ‖f‖p( · ) are related to each other by

‖f‖σ
p( · ) ≤ Ip(f) ≤ ‖f‖θ

p( · ) (4.1)

where

σ=

{
ess infx∈Ω p(x), ‖f‖p( · ) ≥ 1 ;
ess supx∈Ω p(x), ‖f‖p( · ) ≤ 1 ;

and θ=

{
ess infx∈Ω p(x), ‖f‖p( · ) ≤ 1 ;
ess supx∈Ω p(x), ‖f‖p( · ) ≥ 1 .

The basics on the spaces Lp( · )(Ω) may be found in [10].



8 H. Rafeiro and S. Samko Comp.an.op.th.

In the sequel we assume that p(x) satisfies the following standard conditions

1 < ess inf
x∈Ω

p(x) ≤ p(x) ≤ ess sup
x∈Ω

p(x) <∞ (4.2)

and

|p(x) − p(y)| ≤ C

− ln |x− y| , |x− y| ≤ 1
2
, x, y ∈ Ω . (4.3)

The continuous imbedding

Lp(x) ↪→ Lr(x) , 1 ≤ r(x) ≤ p(x) ≤ ess sup
x∈Ω

p(x) <∞ (4.4)

is valid if |Ω| <∞.
By q(x) we denote the conjugate exponent: 1

p(x) + 1
q(x) ≡ 1.

Let � be an almost everywhere positive integrable function, called weight.
The weighted variable exponent Lebesgue space Lp( · )(Ω, �) is defined as the set of
all measurable functions for which

‖f‖Lp( · )(Ω,�) = ‖�f‖p( · ) <∞ .

The Hölder inequality holds in the form∣∣∣∣
∫

Ω

f(x)g(x) dx
∣∣∣∣ ≤ k‖f‖Lp( · )(Ω,�)‖g‖Lq( · )(Ω,1/�) . (4.5)

We deal with the class Wp( · )(Ω) of weights related to the exponent p(x) in
the following way. We say that � ∈ Wp( · )(Ω), if � is a finite product of power
weights of the form

�(x) =
N∏

k=1

|x− xk|βk , xk ∈ Ω , (4.6)

where
− n

p(xk)
< βk <

n

q(xk)
, k = 1, 2, . . . , N . (4.7)

Theorem 4.1. Let K and K0 be regular linear integral operators as defined in (3.3)
and (3.5), acting from Lp1( · )(Ω, �1) into Lp2( · )(Ω, �2), where |Ω| < ∞, let p1( · )
and p2( · ) satisfy conditions (4.2)–(4.3) and �j ∈ Wpj( · )(Ω), j = 1, 2. If

|K(x, t)| ≤ K0(x, t) ,

and the majorizing operator K0 is compact from Lp1( · )(Ω, �1) to Lp2( · )(Ω, �2),
then the operator K is also compact.

Proof. The statement of the theorem follows from Theorem 3.12, since Lpj( · )(Ω,�j)
(j = 1, 2) are Banach function spaces with absolutely continuous norms. The latter
follows from Lemma 2.6, since for the case of variable exponent Lebesgue spaces
the associate space and dual space coincide under the assumptions of the theo-
rem. �
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From this theorem we will derive a statement on compactness of potential
type operators in weighted variable exponent Lebesgue spaces. To this end, we
first need Lemma 4.3 below, in which we approximate integral operators

Kf(x) =
∫

Ω

K(x, y)f(y)dy , x ∈ Ω , (4.8)

by similar operators Kmf(x)=
∫
ΩKm(x, y)f(y)dy, with degenerate kernels Km(x, y)

of the form

Km(x, y) =
m∑

k=1

ak(x)bk(y) . (4.9)

We also make use of the following fact for the mixed norm spaces.

Remark 4.2. Let Ak ⊂ Ω be pairwise disjoint bounded open sets and let Bk ⊂ Ω
satisfy the same property. Functions of the form


m(x, y) =
m∑

k=1

CkχAk
(x)χBk

(y) , (4.10)

where Ck = const, are dense in every mixed norm space LP [LQ](Ω × Ω) for all
the constant exponents P and Q, 1 ≤ P < ∞, 1 ≤ Q < ∞. We refer to [1, 3, 4] for
mixed norm spaces.

Lemma 4.3. Let Ω be a bounded open set, let p ∈ C(Ω), 1 ≤ p(x) ≤ P < ∞
and � ∈ Wp( · )(Ω) and let K(x, y) ∈ L∞(Ω × Ω). Then there exists a sequence of
bounded operators Km with degenerate kernels Km(x, y) of form (4.9) such that

‖K − Km‖Lp( · )(Ω,�)→Lp( · )(Ω,�) → 0 (4.11)

as m→ ∞.

Proof. Without loss of generality we can consider a single weight

�(x) = |x− x0|β .
(The case of the products of such weights is reduced to the case of a single weight
by the known standard arguments with the unity partition 1 =

∑n
k=1 ωk(x), where

the C∞-functions ωk(x) are supported in a neighborhood of the point xk and are
identical zero in neighborhoods of other points xj with j 	= k).

To find the approximations Km(x, y), we proceed as follows. By Hölder in-
equality (4.5), we obtain

|(K − Km)f(x)| ≤ c ‖�f‖p( · )
∥∥∥∥1
�

[K(x, · ) −Km(x, · )]
∥∥∥∥

q( · )
(4.12)

and then

‖(K − Km)f‖Lp( · )(Ω,�) ≤ c ‖f‖Lp( · )(Ω,�)

∥∥∥∥∥�
∥∥∥∥1
�

(K −Km)
∥∥∥∥

q( · )

∥∥∥∥∥
p( · )

. (4.13)
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Let Bδ = Bδ(x0) = {x ∈ Ω : |x − x0| < δ}, where δ > 0 will be later chosen
sufficiently small. We find it convenient to introduce the notation

Ω1 = Ω\Bδ , Ω2 = Bδ , Ωij = Ωi × Ωj , i, j = 1, 2

and

P1 = sup
x∈Ω

p(x) , Q1 = sup
x∈Ω

q(x) ,

P2 = sup
x∈Bδ

p(x) , Q2 = sup
x∈Bδ

q(x) .

We split the weights

�(x) = c(x)χΩ1(x) + �(x)χΩ2 (x) and
1

�(y)
= d(y)χΩ1 (y) +

χΩ2(y)
�(y)

(4.14)

where c(x) and d(y) are bounded functions.
According to the splitting in (4.14), from (4.13) we have

‖(K − Km)f‖Lp( · )(Ω,�) ≤ c‖f‖Lp( · )(Ω,�)

(∥∥‖(K −Km)‖Lq( · )(Ω1)

∥∥
Lp( · )(Ω1)

+

∥∥∥∥∥
∥∥∥∥1
�
(K −Km)

∥∥∥∥
Lq( · )(Ω2)

∥∥∥∥∥
Lp( · )(Ω1)

+
∥∥�‖(K −Km)‖Lq( · )(Ω1)

∥∥
Lp( · )(Ω2)

+

∥∥∥∥∥�
∥∥∥∥1
�
(K −Km)

∥∥∥∥
Lq( · )(Ω2)

∥∥∥∥∥
Lp( · )(Ω2)

)
.

By imbedding (4.4) we then obtain

‖K − Km‖Lp( · )(Ω,�)→Lp( · )(Ω,�) ≤ C
∥∥‖(K−Km)‖LQ1(Ω1)

∥∥
LP1 (Ω1)

+

∥∥∥∥∥
∥∥∥∥1
�

(K −Km)
∥∥∥∥

LQ2(Ω2)

∥∥∥∥∥
LP1(Ω1)

+
∥∥�‖(K −Km)‖LQ1(Ω1)

∥∥
LP2(Ω2)

+

∥∥∥∥∥ �
∥∥∥∥1
�

(K −Km)
∥∥∥∥

LQ2(Ω2)

∥∥∥∥∥
LP2(Ω2)

.

Under the notation

k11(x, y) = K(x, y)χΩ1 (x)χΩ1 (y) , k12(x, y) =
K(x, y)
�(y)

χΩ1(x)χΩ2 (y) ,

k21(x, y) = �(x)K(x, y)χΩ2 (x)χΩ1 (y) , k22(x, y) =
�(x)
�(y)

K(x, y)χΩ2 (x)χΩ2 (y) ,
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and similar notation for kij
m(x, y), this turns into

‖K − Km‖Lp( · )(Ω,�)→Lp( · )(Ω,�) ≤ C

2∑
i,j=1

∥∥‖kij − kij
m‖LQj (Ωj)

∥∥
LPi (Ωi)

. (4.15)

Since � ∈ Wp( · )(Ω), we have − n
p(x0)

< β0 <
n

q(x0) . By continuity of p(x) we may
choose δ > 0 sufficiently small so that

− n

P2
< β0 <

n

Q2
. (4.16)

Then
kij(x, y) ∈ LPi [LQj ](Ωi × Ωj) ,

which was the main goal of the splitting we made. Therefore, by Remark 4.2
every function kij(x, y), i, j = 1, 2, may be approximated in LPi [LQj ](Ωi ×Ωj) by
degenerate functions of form (4.10). We chose kij

m(x, y) as these approximations.
Then

2∑
i,j=1

∥∥‖kij − kij
m‖LQj (Ωj)

∥∥
LPi (Ωi)

→ 0

as m→ ∞ and we arrive at (4.11) under the choice Km(x, y)

Km(x, y) = k11
m (x, y)χΩ1(x)χΩ1 (y) + �(y)k12

m (x, y)χΩ1 (x)χΩ2 (y)

+
k21

m (x, y)
�(x)

χΩ2(x)χΩ1 (y) +
�(y)
�(x)

k22
m (x, y)χΩ2(x)χΩ2 (y) . �

Corollary 4.4. Let Ω, p(x) and �(x) satisfy the assumptions of Lemma 4.3. Integral
operators with bounded kernel are compact in Lp( · )(Ω, �).
Theorem 4.5. Let

(
I

α( · )
A ϕ

)
(x) =

∫
Ω

A(x, y)
|x− y|n−α(y)

ϕ(y)dy ,

where Ω is a bounded open set. Under the conditions

A(x, y) ∈ L∞(Ω × Ω) and α0 := ess inf
y∈Ω

α(y) > 0

the operator Iα( · )
A is compact in the space Lp( · )(Ω, �), if p(x) satisfies assump-

tions (4.2) and (4.3) and � ∈ Wp( · )(Ω).

Proof. In view of Theorem 4.1, it suffices to prove the compactness of the operator
I

α( · )
A with A = const. Since Ω is bounded and ess inf α(x) > 0, by the same

theorem we may also assume that α(y) = α = const > 0. The compactness of the
operator Iα( · )

A with A = const and α(y) = α0 > 0 under conditions (4.2) and (4.3)
was proved in [9] in the non-weighted case � = const.



12 H. Rafeiro and S. Samko Comp.an.op.th.

The weighted case may be dealt with via Hedberg’s trick and Corollary 4.4.
We represent the operatorIα0 := Iα0

A |A=1 as

Iα0f(x) =
∫
|x−y|<ε

|f(y)|dy
|x− y|n−α0

+
∫
|x−y|>ε

|f(y)|dy
|x− y|n−α0

= Aεf(x) + Bεf(x) (4.17)

under the usual assumption that f(y) ≡ 0 for y 	∈ Ω. The operator Bε is compact
by Corollary 4.4. As is well known,

|Aεf(x)| ≤ cεα0(Mf)(x) . (4.18)

Therefore, by (4.18)∥∥Iα0 − Bε

∥∥
Lp( · )(Ω,�)→Lp( · )(Ω,�)

=
∥∥Aε

∥∥
Lp( · )(Ω,�)→Lp( · )(Ω,�)

≤ cεα0
∥∥M∥∥

Lp( · )(Ω,�)→Lp( · )(Ω,�)
−−−→
ε→0

0

in view of the boundedness of the maximal operator in Lp( · )(Ω, �), see [9], so that
Iα0 is a compact operator as well. �
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