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able exponent Lebesgue, Morrey and Hölder spaces, based on the talk pre-
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1. Introduction

Last decade there was a strong increase of interest to studies of various operators
and function spaces in the “variable setting”, when parameters defining the op-
erator or the space (which usually are constant), may vary from point to point.
A number of mathematical problems leading, for instance, to Lebesgue spaces
Lp(·) with variable exponent, or Sobolev spaces Wm,p(·) arise in applications to
PDE, variational problems and continuum mechanics (in particular, in the theory
of the so-called electrorheological fluids), see [76]; see also a recent paper [9] on
applications in the problems of image restoration. These applications stipulated
a significant interest to the spaces Lp(·) in the last decade. The study of clas-
sical operators of harmonic analysis (maximal, singular operators and potential
type operators) in the generalized Lebesgue spaces Lp(·) with variable exponent,
weighted or non-weighted, undertaken last decade, continues to attract a strong
interest of researchers, influenced in particular by possible applications. We refer
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in particular to the surveying articles [22], [51], [82]. A progress in the study of
these spaces raised a natural interest to other spaces whose parameters may be
variable, for instance, Morrey spaces or Hölder (Lipschitz) spaces. The develop-
ment of Harmonic Analysis and Operator Theory in the spaces Lp(·) led also to
an interest to variability of parameters defining an operator.

The area which is now called variable exponent analysis, last decade became
a rather branched field with many interesting results obtained in Harmonic Anal-
ysis, Approximation Theory, Operator Theory, Pseudo-Differential Operators. We
present a survey of a certain selection of results on estimation of the classical
operators of harmonic analysis, mainly obtained after surveys [22], [51], [82] had
appeared, and present some new results on such estimations, mainly in variable
Morrey and Hölder spaces. The survey is far from being complete and reflects a
part of results obtained last several years. For earlier results in the topic related
to Lebesgue and Sobolev spaces Lp(·), Wm,p(·) of variable order we refer to the
above-mentioned surveys.

We start with typical examples of operators of variable order and spaces with
variable exponents.

1.1. Typical examples of operators with variable orders

10. The Riesz fractional integration operator of functions on Rn may be considered
in the case of variable order:

Iα(·)f(x) =
∫

Rn

f(y)dy

|x − y|n−α(x)
, α(x) > 0. (1.1)

(We omit the usual normalizing constant 1
γn(α) ; in the case where α is constant, it

is for the validity of the semigroup property IαIβ = Iα+β .) In general, α(x) may
be allowed to approach singular value α(x) = 0 at some points, and then we have
to study mapping properties of Iα(·) in these or other function spaces, taking into
account the degeneracy of the order α(x).

20. Hypersingular integrals. In the case of constant α, the operator (left)-inverse to
the Riesz potential operator is the fractional power (−∆)

α
2 and it may be realized

as a hypersingular integral, see [81]. The corresponding variable order construction
(written for the case 0 < α(x) < 1) is:

D
α(·)f(x) =

∫

Rn

f(x) − f(x − y)
|y|n+α(x)

dy.

30. One-dimensional Riemann-Liouville fractional integration:

Iα(·)f(x) =
1

Γ[α(x))

∫ x

a

f(y)(x − y)α(x)−1 dy, α(x) > 0,

as well as the corresponding fractional differentiation. Such operators have appli-
cations in Physics, see, for instance, [50].
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40. Fractional operators over quasimetric measure spaces. More generally, frac-
tional operators of variable order may be considered on arbitrary domains in Rn,
surfaces, manifolds, fractal sets, and in general, in the setting of quasimetric mea-
sure spaces (X, d, µ) with a quasimetric d and positive Borel measure µ. It is
known, see, for instance, [25], [51], [52], that they are defined in different forms,
not equivalent in general,

Iα(·)f(x) =
∫

X

[d(x, y)]α(x)

µB(x, d(x, y))
f(y) dµ(y),

(1.2)

Iαf(x) =
∫

Ω

f(y) dµ(y)
µB(x, d(x, y))1−α(x)

,

and

Iα(·)f(x) =
∫

X

f(y) dµ(y)
[d(x, y)]N−α(x)

, (1.3)

where α(x) > 0 and N should be thought as a kind of dimension of X . However, in
general, X may have no “dimension”, but may have the so-called lower and upper
dimensions, which in their turn may depend on the point x. In the case where the
measure satisfies the growth condition µB(x, r) ≤ CrN with some N > 0, this
exponent N (not necessarily an integer), may be used to define Iα(·)f(x).

50. Fractional maximal function. Another example of an operator of variable order
is the fractional maximal function

Mα(·)f = sup
r>0

r−α(x)

∫
|y−x|<r

f(y) dy

and its corresponding version for an arbitrary quasimetric measure space.

60. Fractional powers of operators of variable order. In general, one may also
consider fractional powers Aα(x) of this or other operator A; however, different
definitions of such powers, which coincide in the case α = const, now may lead do
quite different objects. We do not touch this topic here.

1.2. Typical examples of spaces with variable exponents

1. Generalized Lebesgue spaces Lp(·)(Ω) with variable exponent (see [85], [62]
and surveys [22], [51], [82]) defined by the condition∫

Ω

|f(x)|p(x) dx < ∞.

2. More generally, Musielak-Orlicz spaces LΦ(·)(Ω) with the Young function also
varying from point to point (see [68], [21]):∫

Ω

Φ[x, f(x)] dx < ∞.
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3. Variable exponent Morrey spaces Lp(·),λ(·)(Ω) ([3], [53], [54]) defined by

sup
x∈Ω, r>0

r−λ(x)

∫

B(x,r)∩Ω

|f(y)|p(y)dy < ∞. (1.4)

4. Hölder spaces Hλ(·)(Ω) of variable order ([47], [48], [74]), defined by the
condition

sup
|h|<t

|f(x + h) − f(x)| ≤ Ctλ(x), x ∈ Ω.

5. More generally, generalized Hölder spaces with variable characteristic ω(h) =
ω(x, h) depending on x ([88]):

sup
|h|<t

|f(x + h) − f(x)| ≤ Cω(x, t),

that is, the spaces of continuous functions with a given dominant of their
continuity modulus, which may vary from point to point.

Notation
(X, d, µ) is a measure space with quasimetric d and a non-negative measure µ;
B(x, r) = BX(x, r) = {y ∈ X : d(x, y) < r};
p′(x) = p(x)

p(x)−1 , 1 < p(x) < ∞, 1
p(x) + 1

p′(x) ≡ 1;
p− = p−(X) = inf

x∈X
p(x), p+ = p+(X) = sup

x∈X
p(x);

p′− = inf
x∈X

p′(x) = p+

p+−1 , (p′)+ = sup
x∈X

p′(x) = p−
p−−1 ;

P(X), see (2.2)–(2.3);
a.i. = almost increasing ⇐⇒ u(x) ≤ Cu(y) for x ≤ y, C > 0.
R

n is the n-dimensional Euclidean space;
Ω is a non-empty open set in Rn or Ω;
dΩ denotes the diameter of Ω;
χE is a characteristic function of a measurable set E ⊂ Rn;
|E| is the Lebesgue measure of E;
by c and C we denote various absolute positive constants, which may have
different values even in the same line.

2. Some basics for variable exponent Lebesgue spaces

In the sequel (X, d, µ) is a homogeneous type space, i.e., a measure space with
a quasimetric d and a non-negative measure µ satisfying the doubling condition;
we refer to [11], [25], [42], for the basic notions of function spaces on quasimetric
measure spaces. The space (X, d, µ) is assumed to satisfy the conditions:

1) all the balls B(x, r) are measurable,
2) the space C(X) of uniformly continuous functions on X is dense in L1(µ).

The doubling condition means that µB(x, 2r) ≤ CµB(x, r).
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By Lp(·)(X, �), where �(x) ≥ 0, we denote the weighted Banach space of
measurable functions f : X → C such that

‖f‖Lp(·)(X,�) := ‖�f‖p(·) = inf


λ > 0 :

∫

X

∣∣∣∣�(x)f(x)
λ

∣∣∣∣
p(x)

dµ(x) ≤ 1


 < ∞.

(2.1)
We write Lp(·)(X, 1) = Lp(·)(X) and ‖f‖Lp(·)(X) = ‖f‖p(·) in the case �(x) ≡ 1.

The generalized Lebesgue spaces Lp(·)(X) with variable exponent on quasi-
metric measure spaces have been considered in [31], [35], [44], [45], [46], [49], [66],
the Euclidean case being studied in [26], [29], [62], [85], see also references therein.

By P(X) we denote the set of bounded measurable functions p(x) defined on
X which satisfy the condition

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ X (2.2)

and by WL(X) we denote the set of functions p(x) such that

|p(x) − p(y)| ≤ A

ln 1
d(x,y)

, d(x, y) ≤ 1
2
, x, y ∈ X. (2.3)

3. On some recent results on boundedness of classical operators
in spaces Lp(·)(Ω, �)

The boundedness of various classical operators in Lp(·)(Ω), Ω ⊆ Rn, in the non-
weighted case was proved in [12] by the extrapolation method. An extension to the
case of weighted estimates, including the setting of quasimetric measure spaces,
was given in [58], [57]. In relation to the extrapolation method, we refer to [75],
[15], [16], [17].

We touch the cases not covered in [12], [58], [57] for the following operators
1) Convolution operators

Af(x) =
∫

Rn

k(y)f(x − y)dy (3.1)

with rather “nice” kernels for which the local log-condition is not needed,
2) Hardy-Littlewood maximal operator

Mf(x) = sup
r>0

1
µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y), x ∈ X (3.2)

where X in general is a quasimetric measure space, being either an open set
in R

n or a Carleson curve on the complex plane in this section; we pay a
special attention to this special case of metric measure spaces with constant
dimension – Carleson curves – because of important application in operator
theory;
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3) the Cauchy singular integral operator

SΓf(t) =
1
πi

∫

Γ

f(τ)
τ − t

dν(τ) (3.3)

along a Carleson curve Γ on complex plane, where ν is the arc-length measure;
4) potential type operators.

3.1. On convolution operators

We single out a result on convolution operators, obtained without local log-con-
dition. As is known, the Young theorem in its natural form is not valid in the
case of variable exponent, whatsoever smooth exponent p(x) is. As observed by L.
Diening, the Young theorem is valid under the log-condition on p(x) if the kernel
is dominated by a radial integrable non-increasing function. However, a natural
expectation was that the Young theorem may be valid in the case of rather “nice”
kernels without the local log-condition, which was proved in [23], see Theorem 3.1.

Let P∞(Rn) be the set of measurable bounded functions on Rn such that
1 ≤ p− ≤ p(x) ≤ p+ < ∞, x ∈ Rn, there exists p(∞) = lim

x→∞ p(x) and

|p(x) − p(∞)| ≤ A

ln (2 + |x|) , x ∈ R
n. (3.4)

Theorem 3.1. Let |k(y)| ≤ C(1+|y|)−λ, y ∈ Rn for some λ > n
(

1 − 1
p(∞) + 1

q(∞)

)
.

Then the operator (3.1) is bounded from Lp(·)(Rn) to Lq(·)(Rn) under the only as-
sumption that p, q ∈ P∞(Rn) and q(∞) ≥ p(∞).

3.2. On the maximal operator

Let

Mf(x) = sup
r>0

1
µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y) (3.5)

be the Hardy-Littlewood maximal operator. In the case of constant p ∈ (1,∞)
the boundedness of the maximal operator on bounded quasimetric measure spaces
is well known, due to A.P. Calderón [8] and R. Maćıas and C. Segovia [65], for
weights in the Muckenhoupt class Ap = Ap(X). For variable exponents, the non-
weighted boundedness of the maximal operator was first proved in the Euclidean
case in [18], [19], for bounded domains or for Rn with p(x) ≡ const outside some
large ball. For further results in non-weighted case see [13], [14], [21], [63], [69],
[70]. Extensions to the case of quasimetric measure spaces were considered in [45]
and [49].

Let, by definition, Ap(·)(X) := Muckenhoupt class be the class of weights for
which the maximal operator is bounded in the space Lp(·)(X, �). By Ãp(·)(X) we
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denote the class of weights, which satisfy the “Muckenhoupt-like looking” condition

sup
x∈X,r>0


 1

µB(x, r)

∫

B(x,r)

|�(y)|p(y)dµ(y)




 1

µB(x, r)

∫

B(x,r)

dµ(y)

|�(y)|
p(y)

p−−1




p−−1

< ∞,

(3.6)
where p− = infx∈X p(x). The class Ãp(·)(X) coincides with Ap(·)(X) in the case
where p is constant. The next theorem ([61] in the case X is a Carleson curve
and [60], [59] in the general case) states that Ãp(·)(X) ⊂ Ap(·)(X) under natural
conditions.

Theorem 3.2. Let X be a bounded doubling measure quasimetric space. Under
conditions (2.2), (2.3) and (3.6), M is bounded in Lp(·)(X, �).

In the case of power weights or radial type weights, the boundedness of the
maximal operator was obtained under conditions weaker than derived from (3.6).
We refer for details to [58], [57], but mention that for a radial weight w(|x−a|), a ∈
Ω, with w in the so-called Bary-Stechkin type class, the condition on the weight,
in the Euclidean case, reduces to

− n

p(a)
< m(w) ≤ M(w) <

n

p′(a)
(3.7)

in terms of the Matuszewska-Orlicz indices m(w) and M (w) of the function w(r);
see a version of (3.7) for quasimetric measure spaces in [58], [57]. The sufficiency
of the above condition in terms of the numbers m(w) and M (w) seems to be
a new result even in the case of constant p. In relation with (3.7), note that in
applications, the verification of the Muckenhoupt condition for a concrete weight
may be an uneasy task, even in the case of constant p. Therefore, it is always of
importance to have easier sufficient conditions for weight functions, as, for instance,
in (3.7).

3.3. On the Cauchy singular operator

We specially dwell on the case of the Cauchy singular operator along Carleson
curves because of of its importance in application to singular integral equations.

Theorem 3.3 ([55]). Let Γ be a simple Carleson curve of finite or infinite length,
let p ∈ P(Γ) ∩ WL(Γ) and the following condition at infinity

|p(t) − p(τ)| ≤ A∞
ln 1

| 1t − 1
τ |

,

∣∣∣∣1t − 1
τ

∣∣∣∣ ≤ 1
2
,

for |t| ≥ L, |τ | ≥ L with some L > 0, in the case Γ is infinite. Then the operator SΓ

is bounded in the space Lp(·)(Γ, �) with weight �(t) = (1+|t|)β
m∏

k=1

|t−tk|βk , tk ∈ Γ,
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if and only if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, . . . , m, and − 1

p(∞)
< β +

m∑
k=1

βk <
1

p′(∞)
,

(3.8)
the latter condition appearing in the case Γ is infinite.

An extension of Theorem 3.3 to the case of radial type oscillating weights
from the Zygmund-Bary-Stechkin class Φβ

δ may be found in [56]. The following is
an extension of the Guy David theorem to the case of variable exponent p(x).

Theorem 3.4. Let Γ be a finite rectifiable curve and p : Γ → [1,∞) a continu-
ous function. If the operator SΓ is bounded in Lp(·)(Γ), then the curve Γ has the
property

sup
t∈Γ
r>0

ν(Γ ∩ B(t, r))
r1−ε

< ∞ (3.9)

for every ε > 0. If p(t) satisfies the log-condition (2.3), then (3.9) holds with ε = 0,
i.e., Γ is a Carleson curve.

3.4. On potential operators

For non-weighted results on potentials and Sobolev embeddings we refer to [12],
[20], [24], [27], [28], [34], [67], [80].

a) Weighted p(·) → q(·)-boundedness. The known generalization of Sobolev theo-
rem by Stein-Weiss for the case of power weights was extended in [83], [84] to the
variable exponent setting as follows.

Theorem 3.5. Let p ∈ P(Rn)∩WL(Rn), sup
x∈Rn

p(x) < n
α , �(x) = |x|γ0(1+ |x|)γ∞−γ0

and

|p∗(x)−p∗(y)| ≤ A∞
ln 1

|x−y|
, |x−y| ≤ 1

2
, x, y ∈ R

n, p∗(x) = p

(
x

|x|2
)

. (3.10)

Then operator (1.1) with α(x) = α = const is bounded from Lp(·)(Rn, �) to
Lq(·)(Rn, �), if

α − n

p(0)
< γ0 <

n

p′(0)
, α − n

p(∞)
< γ∞ <

n

p′(∞)
. (3.11)

We refer to [78] for a generalization of Theorem 3.5 to the case of more general
radial type weights. In connection with estimation of operators over unbounded
domains, we refer also to a certain general approach suggested in [40].

b) Characterization of the range of potential operators. The inversion of the Riesz
potentials with densities in Lp(·)(Rn) by means of hypersingular integrals

D
αf =

1
dn,�(α)

lim
ε→0

∫
|y|>ε

(
∆�

yf
)

(x)
|y|n+α

dy, (3.12)
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known also as Riesz fractional derivatives of order α, was obtained in [2] (we refer
to [81] for the case of constant p and hypersingular integrals in general). This gave
a possibility to obtain in [6] a characterization of the range Iα[Lp(·)(Rn)] in terms
of convergence of D

αf in Lp(·)(Rn) as follows.

Theorem 3.6. Let p ∈ WL(Rn), 1 < p−(Rn) ≤ p+(Rn) < n
α and f a locally

integrable function. Then f ∈ Iα[Lp(·)(Rn)], if and only if f ∈ Lq(·)(Rn) with
1

q(·) = 1
p(·) − α

n , and Dαf ∈ Lp(·) (treated in the sense of convergence in Lp(·)).

A study of the range Iα[Lp(·)(Ω)] for domains Ω ⊂ Rn is an open question;
in the form given in Theorem 3.6 it is open even in the case of constant p, one of
the reasons being in the absence of the corresponding apparatus of hypersingular
integrals adjusted to domains in Rn; some their analogue reflecting the influence
of the boundary was recently suggested in [72] for the case 0 < α < 1. In the one-
dimensional case for Ω = (a, b),−∞ < a < b ≤ ∞, when the range of the potential
coincides with that of the Riemann-Liouville fractional integral operators (in the
case 1 < p+ < 1

α ), the characterization for variable p(x) was obtained in [73],
where for −∞ < a < b < ∞ there was also shown its coincidence with the space
of restrictions of Bessel potentials.

The result of Theorem 3.6 was used in [6] to obtain a characterization of the
Bessel potential space

Bα[Lp(·)(Rn)] = {f : f = Bαϕ, ϕ ∈ Lp(·)(Rn)}, α ≥ 0,

where Bαϕ = F−1(1 + |ξ|2)−α/2Fϕ. It runs as follows.

Theorem 3.7. Under the conditions of Theorem 3.6

Bα[Lp(·)(Rn)] = Lp(·)(Rn)
⋂

Iα[Lp(·)(Rn)] = {f ∈ Lp(·)(Rn) : D
αf ∈ Lp(·)(Rn)}

(3.13)
and Bm[Lp(·)(Rn)] = Wm,p(·)(Rn) for any integer m ∈ N0, where Wm,p(·)(Rn) is
the Sobolev space with the variable exponent p(x).

Statement (3.13) has the following generalization, see [73], Theorem 4.10.

Theorem 3.8. Let Y = Y(Rn) be a Banach function space, satisfying the assump-
tions

i) C∞
0 is dense in Y;

ii) the maximal operator M is bounded in Y;
iii) Iαf(x) converges absolutely for almost all x for every f ∈ Y and

(1 + |x|)−n−αIαf(x) ∈ L1(Rn).
Then

Bα(Y) = Y
⋂

Iα(Y) = {f ∈ Y : D
αf = lim

ε→0
(Y)

D
α
ε f ∈ Y}. (3.14)

From Theorem 3.8 there follows, in particular, the characterization of the
ranges of potential operators over weighted Lebesgue spaces with variable exponent
obtained by means of results of Subsection 3.2 for the maximal operator.
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Certain results related to imbedding of the range of the Riesz potential op-
erator into Hölder spaces (of variable order) in the case p(x) ≥ n were obtained in
[7]. The results proved in [7] run as follows. In Theorem 3.9 we use the notation
Πp,Ω := {x ∈ Ω : p(x) > n} and Hα(·)(Ω) in Theorem 3.15 is the Hölder-type space
with a finite seminorm [f ]α(·),Ω := supx,x+h∈Ω,0<|h|≤1 |h|−α(x)|f(x) − f(x + h)|.

Theorem 3.9. Let Ω be a bounded open set with Lipschitz boundary, let p ∈
WL(Ω), p+(Ω) < ∞ and let the set Πp,Ω be non-empty. If f ∈ W 1,p(·)(Ω), then

|f(x) − f(y)| ≤ C(x, y) ‖|∇f |‖p(·),Ω |x − y|1− n
min[p(x),p(y)] (3.15)

for all x, y ∈ Πp,Ω such that |x−y| ≤ 1, where C(x, y) = c
min[p(x),p(y)]−n with c > 0

not depending on f, x and y.

Theorem 3.10. Let Ω be a bounded open set with Lipschitz boundary, p ∈ WL(Ω)
and p+(Ω) < ∞. If inf

x∈Ω
p(x) > n, then W 1,p(·)(Ω) ↪→ H1− n

p(·) (Ω).

Theorem 3.10 is an improved version of the result earlier obtained in [27], [30].
The papers [32], [33] are also relevant to the topic. We refer also to [43] where the
capacity approach was used to get embeddings into the space of continuous func-
tions or into L∞(Ω). In [7] there were also obtained W 1,p(·)(Ω) → Lq(·)-estimates
of hypersingular integrals (fractional differentiation operators)

Dα(·)f(x) =
∫

Ω

f(x) − f(y)
|x − y|n+α(x)

dy, x ∈ Ω. (3.16)

We dwell briefly also on extensions to the case of Haj�lasz-Sobolev spaces on
quasimetric measure spaces. In [4], by means of the estimate

|f(x) − f(y)| ≤ C(µ, α, β)
[
d(x, y)α(x)M	

α(·)f(x) + d(x, y)β(y)M	
β(·)f(y)

]

where M	
α(·)f(x) = sup

r>0

r−α(x)

µB(x,r)

∫
B(x,r)

|f(y) − fB(x,r)| dµ(y), generalizing an esti-

mate from [41], there was given an extension of (3.15) with n replaced by the
exponent from the growth condition and ∇f replaced by the generalized gradient
of f . This led to the following result for the Haj�lasz-Sobolev space M1,p(·)(X).

Theorem 3.11. Let the set X be bounded and the measure µ be doubling. If p(·) is
log-Hölder continuous and p− > N , then M1,p(·)(X) ↪→ H1− N

p(·) (X).

We refer also to [5] with regards to Sobolev-type estimations with variable
p(·) of potentials Jα(·) and Iα(·) on metric measure spaces.
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4. Maximal and potential operators in variable exponent
Morrey spaces

In this section we present results obtained for maximal and potential operators in
variable exponent Morrey spaces.

Iα(·)f(x) =
∫

Ω

f(y) dy

|x − y|n−α(x)

of variable order α(x). We prove the boundedness of the maximal operator in Mor-
rey spaces under the log-condition on p(·). For potential operators, under the same
log-condition and the assumptions infx∈Ω α(x) > 0, supx∈Ω [λ(x) + α(x)p(x)] < n,
we present a Sobolev type Lp(·),λ(·) → Lq(·),λ(·)-theorem. In the case of con-
stant α, we also give a result on the boundedness theorem in the limiting case
p(x) = n−λ(x)

α , when the potential operator Iα acts from Lp(·),λ(·) into BMO.
Let p(·) and λ(·) be measurable functions on Ω ⊆ R

n with values in [0, n]. We
define the variable Morrey space Lp(·),λ(·)(Ω) by condition (1.4). Equipped with
the norm

‖f‖ = inf

{
η > 0 : sup

x∈Ω, r>0
r−λ(x)

∫

B(x,r)∩Ω

(
|f(y)|

η

)p(y)

dy ≤ 1

}

= sup
x∈Ω, r>0

∥∥∥r−λ(x)
p(·) f χB̃(x,r)

∥∥∥
p(·)

,

this is a Banach space. In the case where |Ω| < ∞ and λ(·) is log-continuous, this

norm is equivalent to supx∈Ω, r>0

∥∥∥r− λ(·)
p(·) f χB̃(x,r)

∥∥∥
p(·)

. There holds the embedding

Lq(·),µ(·)(Ω) ↪→ Lp(·),λ(·)(Ω), when n−λ(x)
p(x) ≥ n−µ(x)

q(x) .

In the sequel we suppose that 0 ≤ λ(x) ≤ λ+ < n, x ∈ Ω. For constant
exponents p(x) ≡ p and λ(x) ≡ λ the following two theorems were proved in [10],
[1], respectively.

Theorem 4.1. Let Ω be bounded and p ∈ P(Ω)∩WL(Ω). Then the maximal operator
M is bounded in the space Lp(·),λ(·)(Ω).

Theorem 4.2. Let Ω be bounded, p ∈ P(Ω) ∩ WL(Ω) and α ∈ WL(Ω). Under
the conditions inf

x∈Ω
α(x) > 0, supx∈Ω [λ(x) + α(x)p(x)] < n, the operator Iα(·) is

bounded from Lp(·),λ(·)(Ω) to Lq(·),λ(·)(Ω), where 1
q(x) = 1

p(x) − α(x)
n−λ(x) .

For the limiting case p(x) = n−λ(x)
α(x) , we have the following statement, proved

in [71], Theorem 5.4, for constant exponents.

Theorem 4.3. Let 0 < α < n, λ(x) ≥ 0, supx∈Ω λ(x) < n−α, λ ∈ WL(Ω) and let
p(x) = n−λ(x)

α . Then the operator Iα is bounded from Lp(·),λ(·)(Ω) to BMO(Ω).

Theorem 4.3 is derived – via the pointwise estimate M 	(Iαf)(x) ≤ c Mαf(x),
([1], Proposition 3.3) – from the following statement.
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Theorem 4.4. Let Ω be bounded, p ∈ P(Ω)∩WL(Ω) and inf
x∈Ω

α(x) > 0. In the case

p(x) = n−λ(x)
α , the fractional maximal operator

Mα(·)f(x) = sup
r>0

1

|B(x, r)|1− α(x)
n

∫

B̃(x,r)

|f(y)|dy

is bounded from Lp(·),λ(·)(Ω) to L∞(Ω).

5. Fractional integrals and hypersingular integrals in variable order
Hölder spaces on homogeneous spaces

The results we present here are new, they were obtained in [77]. For a version of
such results when X is a sphere Sn−1 in Rn, we refer to [79]. We consider the
mapping properties of potential type operators in Hölder spaces Hλ(·) of variable
order, which in case of domains Ω in Rn are defined by the condition sup|h|<t |f(x+
h)−f(x)| ≤ Ctλ(x), x ∈ Ω. It is done in the general setting of quasimetric measure
spaces (X, d, µ) which satisfy the growth condition

µB(x, r) ≤ KrN as r → 0, K > 0, (5.1)

where N > 0 need not be an integer, for the potentials of form (1.3), where we
admit variable exponent α(x), 0 ≤ α(x) < 1, and Ω is an open bounded set in a
quasimetric measure space X . We will also study the corresponding hypersingular
operators

(Dαf)(x) = lim
ε→0

∫

y∈Ω:�(x,y)>ε

f(y) − f(x)
�(x, y)N+α(x)

dµ(y), x ∈ Ω, (5.2)

within the frameworks of the Hölder spaces Hλ(·)(Ω) with a variable exponent. In
the case of constant α such a study in the general setting of quasimetric measure
spaces (X, �, µ) with growth condition, is known, see [36], [37], [38], [39].

The estimate we present here reveal the mapping properties of the operators
Iα and Dα in dependence of local values of α(x) and λ(x). Note that estimations
with variable λ(x) and α(x) were known in the special case X = Sn−1 for spherical
potential operators and related hypersingular integrals, and even in a more general
setting of generalized Hölder spaces defined by a given (variable) dominant w(x, h)
of continuity modulus, see, for instance, [86], [87], [89].

The estimates we present here are related to a general quasimetric measure
spaces and admit the situation when α(x) may be degenerate on Ω (on a set of
measure zero). We denote

Πα = {x ∈ Ω : α(x) = 0}
and suppose that µ(Πα) = 0.
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To obtain results stating that the range of the potential operator over this
or that Hölder space is imbedded into a better space of a similar nature, we
prove Zygmund type estimates for the continuity modulus. In the case we study,
these estimates are local, depending on points x. By means of such Zygmund type
estimates of such a kind, we prove theorems on the mapping properties Iα(·) :
Hλ(·)(Ω) → Hλ(·)+α(·)(Ω), and similar results for the operator Dα(·), 0 < α(x) < 1.

Let (X, d, µ) be a homogeneous quasimetric measure space. As shown in [64],
it admits an equivalent quasimetric d1 for which there exists an exponent θ ∈ (0, 1]
such that the property

|d1(x, z) − d1(y, z)| ≤ Mdθ
1(x, y) {d1(x, z) + d1(y, z)}1−θ (5.3)

holds. When d is a quasimetric, then d automatically satisfies (5.3) with θ = 1 and
M = 1. For brevity, we will say that the quasimetric d is regular of order θ ∈ (0, 1],
if it satisfies property (5.3).

In the sequel we suppose that all the balls B(x, r) = {y ∈ X : d(x, y) < r}
are measurable and µS(x, r) = 0 for all the spheres S(x, r) = {y ∈ X : d(x, y) =
r}, x ∈ X r ≥ 0.

For fixed x ∈ Ω we consider the local continuity modulus

ω(f, x, h) = sup
z∈Ω:

d(x,z)≤h

|f(x) − f(z)| (5.4)

of a function f at the point x. Everywhere below we assume that |h| < 1. The
function ω(f, x, h) is non-decreasing in h and tends to zero as h → +0 for any
continuous function on Ω and fixed x.

Lemma 5.1. For all x, y ∈ Ω such that d(x, y) ≤ h, the inequality
1
C

ω(f, x, h) ≤ ω(f, y, h) ≤ Cω(x, y, h) (5.5)

holds, where C = [2k] + 2 and k is the constant from the triangle university. If
a(x) ∈ WL(Ω), then

1
C

ha(x) ≤ ha(y) ≤ Cha(x) (5.6)

for all x, y such that d(x, y) < h, where C ≥ 1 depends on the function a, but does
not depend on x, y and h.

For a function λ(x) defined on Ω we suppose that

λ− := inf
x∈X

λ(x) > 0 and λ+ := sup
x∈X

λ(x) < 1.

Definition 5.2. By Hλ(·)(Ω) we denote the space of functions f ∈ C(Ω) such that
ω(f, x, h) ≤ Chλ(x), where C > 0 does not depend on x, y ∈ Ω. Equipped with the
norm

‖f‖Hλ(·)(Ω) = ‖f‖C(Ω) + sup
x∈Ω

sup
h∈(0,1)

ω(f, x, h)
hλ(x)

,

this is a Banach space.
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In Hölder norm estimations of functions Iαf , the case f ≡ const plays an
important role, in the case where

Iα(x) := Iα(1)(x) =
∫

Ω

dµ(z)
d(x, z)N−α(x)

(5.7)

is well defined. Observe that in the Euclidean case Ω = X = RN , this integral
although not well directly defined, may be treated as a constant in the case α(x) =
α = const in the sense that the cancellation property∫

RN

[
1

|z − x|N−α
− 1

|z − y|N−α

]
dz ≡ 0, 0 < α < 1, x, y ∈ R

N

holds. For constant α, the function Iα(x) is also constant in the case Ω = X =
SN−1, which fails when α = α(x) and the cancellation property of the type∫

Ω

[
1

|z − x|N−α(x)
− 1

|z − y|N−α(y)

]
dµ(z) ≡ 0,

no more holds even for Ω = RN or Ω = SN−1; see, for instance, [36] on the
importance of the cancellation property Iα(1) ≡ const for the validity of mapping
properties of potentials within Hölder spaces on quasimetric measure spaces. When
we consider Hölder type spaces Hλ(·)(Ω) which contain constants, the condition

Iα(1) ∈ Hλ(·)+α(·)(Ω)

is necessary for the mapping Iα : Hλ(·)(Ω) → Hλ(·)+α(·)(Ω) to hold.

Remark 5.3. Let inf
x∈Ω

α(x) ≥ 0 and x, y /∈ Πα. Then

|Iα(x) − Iα(y)| ≤ C
|α(x) − α(y)|

min(α(x), α(y))
+
∣∣∣∣
∫

Ω

[
d(x, z)α(x)−N − d(y, z)α(x)−N

]
dµ(z)

∣∣∣∣
(5.8)

and

|α(x)Iα(x) − α(y)Iα(y)| (5.9)

≤ C |α(x) − α(y)| + min(α(x), α(y))
∣∣∣∣
∫

Ω

[
d(x, z)α(x)−N − d(y, z)α(x)−N

]
dµ(z)

∣∣∣∣
where C > 0 does not depend on x, y ∈ Ω.

Remark 5.4. The meaning of estimates (5.8)–(5.9) is in the fact that the second
term on the right-hand sides may be subject to the cancellation property: at the
least it disappears when Ω = X = R

N or Ω = X = S
N−1.

The estimate (5.10) provided by the following theorem clearly shows the
worsening of the behaviour of the local continuity modulus ω(Iαf, x, h) when x
approaches the points where α(x) vanishes. We also give a weighted estimate
exactly with the weight α(x).
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We use the notation

αh(x) = min
d(x,y)<h

α(y).

Theorem 5.5. Let Ω be a bounded open set in X, let α ∈ WL(Ω) and 0 ≤
inf
x∈Ω

α(x) ≤ sup
x∈Ω

α(x) < min(1, N). Then for all the points x ∈ Ω\Πα such that

αh(x) �= 0, 0 < h < d
2 , the following Zygmund type estimate is valid

ω(Iαf, x, h) ≤ C

αh(x)
hα(x)ω(f, x, h) + Chθ

d∫

h

ω(f, x, t)dt

t1+θ−α(x)
(5.10)

+ Cω(α, x, h)

d∫

h

ω(f, x, t)dt

t2−α(x)
+ Cω(Iα, x, h)‖f‖C(Ω),

where the constant C > 0 does not depend on f, x and h.
Also, for all the points x ∈ Ω\Πα the weighted estimate holds

ω(αIαf, x, h) ≤ Chα(x)ω(f, x, h) + Chθ

d∫

h

ω(f, x, t)dt

t1+θ−α(x)
(5.11)

+ Cω(α, x, h)

d∫

h

ω(f, x, t)dt

t2−α(x)
+ Cω(αIα, x, h)‖f‖C(Ω),

5.1. Zygmund type estimates of hypersingular integrals

Theorem 5.6. Let α ∈ C(Ω), α ∈ WL(Ω) and 0 ≤ inf
x∈Ω

α(x) ≤ max
x∈Ω

α(x) < 1. If

f ∈ C(Ω), then for all x, y ∈ Ω with d(x, y) < h such that α(x) �= 0 and α(y) �= 0,
the following estimate is valid

|(Dαf)(x) − (Dαf)(y)| ≤ C

min(α(x), α(y))

h∫

0

[
ω(f, x, t)
t1+α(x)

+
ω(f, y, t)
t1+α(y)

]
dt (5.12)

+ C

2∫

h

[
ω(α, x, h) + hθt1−θ

] ω(f, x, t)dt

t2+α(x)
,

where C > 0 does not depend on x, y and h.

5.2. Theorems on mapping properties

Recall that for the potential operator Iα(·) we allow the variable order α(x) to be
degenerate on a set Πα (of measure zero). We consider the weighted space

Hλ(·)+α(·)(Ω, α) = {f : α(x)f(x) ∈ Hλ(·)+α(·)(Ω}.



296 S. Samko

Theorem 5.7. Let α(x) ≥ 0, max
x∈Ω

α(x) < min(θ, N), α(x) ∈ Lip(Ω), and

sup
x∈Ω

[λ(x) + α(x)] < θ. (5.13)

If
αIα ∈ Hλ(·)+α(·), (5.14)

then the operator Iα(·) is bounded from the space Hλ(·)(Ω) into the weighted space
Hλ(·)+α(·)(Ω, α).

A “non-degeneracy” version of Theorem 5.7 obtained from (5.10), runs as
follows.

Theorem 5.8. Let

0 < min
x∈Ω

α(x) ≤ max
x∈Ω

α(x) < min(θ, N) and α ∈ Lip(Ω). (5.15)

Under conditions (5.13) and (5.14), the operator Iα(·) is bounded from the space
Hλ(·)(Ω) into the space Hλ(·)+α(·)(Ω).

The corresponding mapping theorem for the hypersingular operator runs as
follows.

Theorem 5.9. Under conditions (5.14), (5.15), the operator Dα(·) is bounded from
the space Hλ(·)(Ω) into the space Hλ(·)−α(·)(Ω), if

0 < inf
x∈Ω

{λ(x) − α(x)}, sup
x∈Ω

λ(x) < 1.
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[44] P. Harjulehto, P. Hästö, and V. Latvala. Sobolev embeddings in metric measure
spaces with variable dimension. Math. Z., 254(3):591–609, 2006.
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[46] P. Harjulehto, P. Hästö, and M. Pere. Variable exponent Sobolev spaces on metric
measure spaces. Funct. Approx. Comment. Math., 36:79–94, 2006.

[47] N.K. Karapetyants and A.I. Ginzburg. Fractional integrals and singular integrals in
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variable Hölder condition (in Russian). Dokl. Akad. Nauk, 407(1):12–15, 2006. Transl.
in Doklady Mathematics, 2006, 73(2): 165–168.

[89] B.G. Vakulov, N.K. Karapetiants, and L.D. Shankishvili. Spherical hypersingular op-
erators of imaginary order and their multipliers. Fract. Calc. Appl. Anal., 4(1):101–
112, 2001.

Stefan Samko
University of Algarve
e-mail: ssamko@ualg.pt


