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Abstract We give an overview of a selection of stud-
ies on fractional operations of integration and differ-
entiation of variable order, when this order may vary
from point to point. We touch on both the Euclidean
setting and also the general setting within the frame-
work of quasimetric measure spaces.
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Notation
R

n is the n-dimensional Euclidean space,

|x| =
√

x2
1 + · · · + x2

n;

S
n−1 is the unit sphere in R

n centered at the origin,
|Sn−1| is its surface area;

� is the Laplace operator;
(X,�,μ) denotes a quasimetric measure space with

quasidistance � and measure μ;
δ(x,Ω) = infy∈Ω �(x, y) is the distance of a point

x ∈ X to a set Ω ⊂ X.

1 Introduction: recalling about fractional
Laplacians of constant order

Last decade there was an increase of interest to stud-
ies of various operators and function spaces in the
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“variable exponent setting”. The latter means that
the parameters defining the operator and/or the space
(which usually are constant), may vary from point to
point.

In this overview we touch on several trends and re-
sults in this topic related to fractional Laplacian and
other forms of fractional integro-differentiation. Frac-
tional calculus, not a mainstream in mathematics till
about the middle of the 20th century, nowadays is a
very wide area with many applications, where frac-
tional differential operations play an important role.
We refer to [52] for a detailed historical account and
books Diethelm [9], Hilfer (Ed.) [17], Kilbas, Srivas-
tava, and Trujillo [20], Kiryakova [21], McBride [33],
Miller and Ross [35], Oldham and Spanier [36], Pod-
lubny [37], Rubin [41], Samko [50], Samko, Kilbas
and Marichev [52] for fractional calculus and frac-
tional differential equations in general.

This overview concerns studies rather in functional
analysis and harmonic analysis than various applica-
tions of fractional operators. The overview in no way
pretends to be complete.

We also refer to the paper [51], where the reader
can find an overview more related to variable func-
tion spaces than to variable order operators. Note that
nowadays there exists a vast field of research known
as “variable exponent analysis”, we refer to the book
[6] and the surveying papers [7, 24, 28, 51]. We almost
do not touch on the studies related to variability of the
parameters of the space.
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We start below by recalling basic notions of Frac-
tional Calculus of constant order.

1.1 The case of the whole space R
n

As is well known, one may properly define fractional
powers of various operators in these or other way,
for instance, via spectral decompositions, or formu-
las of the type of Balakrishnan [3]. We refer to the
books [32, 61] for such general functional analysis ap-
proaches. In applications the common preference is
to deal with more direct constructions, in the intrin-
sic terms of the given setting. In the case where one
works with fractional powers of an operator A con-
sidered on functions defined on the whole Euclidean
space R

n, n ≥ 1, and the operator A is translation in-
variant, then a certain direct construction is suggested
by the Fourier analysis approach. Indeed, any trans-
lation invariant operator is a convolution with some
function a, in general a distribution (Hörmander’s the-
orem). Then a natural approach is to define the frac-
tional power Aα,α ∈ R

1, via

Aαf = F−1[â]αFf,

where F is the Fourier transform, â is the Fourier
transform of the distribution a and [â]α stands for the
operation of multiplication. In this one assumes that
[â]α is well defined (and in general, it should be a
multiplier in the corresponding test function space). In
particular, in this way the fractional powers [P(D)]α
of a differential operator P(D),D = ( ∂

∂x1
, . . . , ∂

∂xn
),

where P is a polynomial, are standardly defined by

[
P(D)

]α
f = F−1[P̂ (−iξ)

]α
Ff,

which suits well for elliptic operators. In particular,

(−�)
α
2 f = F−1|ξ |αFf

for the Laplace operator. However, this may not be the
end of the story, because one is interested in the di-
rect expression for (−�)

α
2 f in terms of the function

f itself, not via its Fourier transform. Since so defined
operator (−�)

α
2 is again an operator invariant with re-

spect to translations, we are aware that, in terms of the
function f itself, it is a convolution of f with some
distribution. Thus one has to explicitly calculate it. The
case of negative exponents α = −β with 0 < β < n is
easier in a sense: in this case, the distribution |ξ |α is an

ordinary locally integrable with also locally integrable

Fourier transform and (−�)−
β
2 f has the form

(−�)−
β
2 f (x) = 1

γn(β)

∫

Rn

f (y) dy

|x − y|n−β

=: Iβf (x), (1.1)

where γn(β) = 2βπ
n
2 Γ (

β
2 )

Γ (
n−β

2 )
, which was first realized

by Riesz [39]. The case β /∈ (0, n) may be treated by
the method of analytic continuation with respect to α,
or by Hadamard’s method of finite parts, which is the
same in this case (see details with respect to both the
methods in [52], Sect. 25). Clearly, the analytic con-
tinuation of (1.1) into the strip �α ∈ (0,2) is

(−�)
α
2 f (x) = 1

γn(−α)

∫

Rn

f (x − y) − f (x)

|y|n+α

=: D
αf (x), (1.2)

where 0 < �α < 2. In case of sufficiently nice func-
tions, this integral exists and is absolutely convergent
when 0 < �α < 1 and in the principal value sense
when 1 ≤ α < 2. This construction is known as hyper-
singular integral and often also called Riesz fractional
derivative. In the theory of fractionally differentiable
functions it was first used by Stein [56] to character-
ize fractional order Sobolev spaces (Bessel potential
spaces). There are two approaches to regularize the
integral in the case α > 2: either subtract the Taylor
polynomial in the nominator in (1.2) in the neighbor-
hood |y| < 1 of the origin, or to make use of the finite
differences of higher order. We do not go into details,
this is not our goal in this overview, but just refer for
details to the books [50, 52].

Without danger of confusing we may also use the
same notation both for positive and negative expo-
nents: D

α = I−α , when �α < 0 and assume that D
0 =

I (the identity operator). In the case of sufficiently nice
functions f , the semigroup property

D
α
D

β = D
α+β (1.3)

holds for all complex α and β .
Finally, observe that in the one-dimensional case

of R
1, besides the above constructions which in the

case n = 1 formally are (− d2

dx2 )
α
2 , the unilateral con-

structions (± d
dx

)α are more often used, known as Li-
ouville fractional derivatives. The corresponding hy-
persingular form for the latter is known as the Mar-
chaud fractional derivative. It goes back to the paper

Author's personal copy



Fractional integration and differentiation of variable order: an overview 655

[31] and has the form

D
αf (x) = α

Γ (1 − α)

∫ ∞

0

f (x) − f (x − t)

t1+α
dt,

x ∈ R
1. (1.4)

In the case of the half-axis R
1+, more important for

applications, the Riemann–Liouville fractional deriva-
tives are used. The corresponding difference form
(Marchaud form) in this case is

Dαf (x) = f (x)

Γ (1 − α)xα
+ α

Γ (1 − α)

×
∫ x

0

f (x) − f (x − t)

t1+α
dt, x > 0. (1.5)

1.2 What about domains different from the whole
space?

There exist approaches to fractional powers of the
Laplace operators suited for domains different
from R

n, with boundary conditions taken into account,
which we do not touch on in this overview, but men-
tion a Marchaud type formula corresponding to the
case of domains in R

n, introduced in [38]. It is de-
fined via direct application of the hypersingular in-
tegral (1.2) to a function continued as identical zero
beyond the domain.

Let Ω be an arbitrary domain in R
n and ∂Ω its

boundary. No smoothness or regularity of the bound-
ary is assumed. For a function f (x) defined on Ω , we
put

f̃ (x) =
{

f (x), x ∈ Ω,

0, x /∈ Ω.

Then we define the Riesz type fractional derivative of
the function f , related to the domain Ω as

D
α
Ωf (x) = D

αf̃ (x), x ∈ Ω, (1.6)

dealing with the result only for x ∈ Ω . This leads to
the following formula (compare with the Marchaud
formula (1.5)):

D
α
Ωf (x)

= cΩ(x)
f (x)

[δ(x, ∂Ω)]α

+ λn(α)

∫

Ω

f (x) − f (y)

|x − y|n+α
dy, x ∈ Ω, (1.7)

where 0 < α < 1, λn(α) = 2αΓ (1+ α
2 )Γ ( n+α

2 ) sin απ
2

π
1+ n

2
,

δ(x, ∂Ω) is the distance to the boundary, and cΩ(x)

is a certain bounded function (if Ω has no outer cusps,
or more precisely, if R

n\Ω satisfies the so called cone
property, then also infx∈Ω cΩ(x) > 0).

The advantage of the definition (1.6)–(1.7) is that
it gives the result in the intrinsic terms of the do-
main Ω , but the disadvantage is that the semigroup
property D

α
ΩD

β
Ω = D

α+β
Ω fails except for the triv-

ial case Ω = R
n. In particular, the inversion formula

D
α
ΩIα

Ω = I for the corresponding potential operator
Iα
Ω over Ω , which holds for the case Ω = R

n, is no
more valid.

Having given the above basics known in Fractional
Calculus, we pass to the main topic of this overview.

2 Fractional operators of variable order
in the Euclidean setting

2.1 One-dimensional case

One-dimensional Riemann–Liouville fractional inte-
gration may be considered with variable order:

I
α(·)
a+ f (x) = 1

Γ [α(x))

∫ x

a

f (y)(x − y)α(x)−1 dy,

α(x) > 0,

where a ≥ −∞ and x > a. Similarly, the fractional
derivative may be introduced, of variable order, if one
replaces α, for instance in (1.5), by α(x). Such vari-
able order fractional integrals and derivatives were in-
troduced in [40, 46, 47, 53], where it was dealt with
just from the point of view of mathematical curiosity.
However, later there appeared papers where such oper-
ators were given a certain physical meaning and they
were used in applications in physics and signal pro-
cessing, see for instance, [4, 5, 22, 23, 60].

Obviously, one should forget about the semigroup
property in the case of variable orders.

For one-dimensional fractional integrals of variable
order (of Riesz type) along curves in the complex
plane we refer to [29].

From the function-theoretic point of view, one of
the main questions in the study of such operators is:
what are mapping properties of the operator Iα(x)

in these or other spaces of functions, first of all in
the popular Hölder and Lebesgue spaces Hλ and Lp .
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Since these mapping properties depend on the value
the exponent α(x) at the point x, an immediate obser-
vation is that a natural setting of the problem should in-
clude the spaces with variable characteristics as well.
Hölder spaces Hλ(·)[a, b] of variable order, introduced
in [18, 19, 40], are naturally defined as the set of func-
tions continuous on [a, b],−∞ < a < b < ∞, such
that
∣∣f (x + h) − f (x)

∣∣ ≤ c|h|λ(x) (2.1)

for all x, x + h ∈ [a, b], where 0 < λ(x) ≤ 1. This is
a Banach space with respect to the norm ‖f ‖C[a,b] +
H(f ), where

H(f ) = sup
x,y∈[a,b]

|f (x) − f (y)|
|x − y|λ(x)

= sup
x,y∈[a,b]

|f (x) − f (y)|
|x − y|λ(y)

. (2.2)

The cases where a = −∞ and/or b = ∞, may be
also admitted, with a certain modification if the infi-
nite point is admitted as the point of Hölder continu-
ity. As a generalization of the classical result of Hardy
and Littlewood, in [40, 49] it was proved that the op-
erator I

α(·)
a+ maps functions f ∈ Hλ(·) vanishing at the

point x = a, into the space Hλ(·)+α(·) assuming that
infα(x) > 0, supλ(x) + α(x) < 1 and α(x) and λ(x)

satisfy the so called log-condition. The limiting case
α(x) + λ(x) = 1 is also admitted with the Lipschitz
class modified by the logarithmic factor in this case.

An interesting case is where the exponent α(x) may
vanish at some points, which would mean that the frac-
tional integral behaves at these points as the identity
operator. We touch on the problem of mapping prop-
erties in such cases later in a more general setting of
arbitrary metric measure spaces and general fractional
operator.

We mention also what happens with the inversion
formula Dα+Iα+f ≡ f for the Liouville fractional in-
tegral Iα+ and fractional derivative Dα+, valid for the
constant exponent α, when α is variable. We may now

write D
α(·)
+ I

α(·)
+ = I + K , where I is the identity op-

erator and K is some integral operator. The reader can
find a precise expression for the kernel of this operator
and its estimation in [47]. One of the main questions
is: what should be supposed about α(x) to guarantee
that the additional term K is sufficiently nice, say, a
compact operator. As was shown in [47], the follow-
ing conditions are sufficient for the compactness of
K in the space Lp(−∞, b), b ≤ ∞ : α(x) is locally

differentiable, |α(x) − |α(x − h)| ≤ c|h|(1 + |x|)−1 ×
(1 + |x − h|)−1,0 < infα(x), supα(x) < 1, and
α(−∞) < 1

p
.

2.2 Multi-dimensional case

The Riesz fractional integral and the hypersingular in-
tegral The expression

Iα(·)f (x) = 1

γn[α(x)]
∫

Rn

f (y) dy

|x − y|n−α(x)
,

α(x) > 0, (2.3)

for the Riesz potential of variable order assumes
that α(x) nowhere vanishes. If infα(x) > 0 and
supα(x) < n, the factor 1

γn[α(x)] is inessential for the
study of the mapping properties of the operator; re-
call that in the case of constant α the presence of this
factor was important for the validity of the semigroup
property IαIβ = Iα+β ), which is no more expected
for variable orders.

An interesting question relates to the admission
of the order α(x) which may be degenerate at some
points. Then we have to study mapping properties of
Iα(·) in these or other function spaces, taking into
account the degeneracy of the order α(x). Note that

1
γn(α)

→ 0 as α → 0, so that the presence of normaliz-

ing factor 1
γn[α(x)] , equivalent to α(x)

|Sn−1| as α(x) → 0, is
of importance when we admit a possibility for α(x) to
degenerate. Then we expect that the operator with this
normalizing factor will behave as the identity operator
at the points of degeneracy.

Similarly, the corresponding variable order hyper-
singular integral (written for the case 0 < α(x) < 1) is

D
α(·)f (x) =

∫

Rn

f (x) − f (x − y)

|y|n+α(x)
dy,

where for simplicity we omit the normalizing factor.

The spherical potentials and hypersingular integrals
Now let x,σ ∈ S

n−1 and f (σ ) be a function defined
on S

n−1. To introduce the spherical fractional integral
of Riesz type, we may try just to copy the construction
(2.3) and introduce the spherical potential operator of
variable order of the function f directly as

I
α(·)f (x) = 1

γn−1[α(x)]
∫

Sn−1

f (σ )dσ

|x − σ |n−1−α(x)
,

x ∈ S
n−1, (2.4)

Author's personal copy



Fractional integration and differentiation of variable order: an overview 657

where dσ stands for the surface measure on S
n−1 and

we assume that 0 < α(x) < n − 1.
It is known that the space R

n may be one-to-
one transformed onto the n-dimensional sphere via
the stereographic projection. Under this projection
the spatial potential over R

n transforms into ex-
actly the spherical potential over S

n in R
n+1, up to

some weight function. The stereographic projection
maps the sphere S

n onto the space R
n = {x ∈ R

n+1 :
xn+1 = 0} via the change of variables in R

n+1 :
ξ = s(x) = {s1(x), s2(x), . . . , sn+1(x)} where

sk(x) = 2xk

1 + |x|2 , k = 1,2, . . . , n and

sn+1(x) = |x|2 − 1

|x|2 + 1
,

x ∈ R
n+1, |x| =

√
x2

1 + · · · + x2
n+1 (see [34]). The for-

mulas |x − y| = 2|σ−ξ |
|σ−en+1|·|ξ−en+1| , dy = 2n

|σ−en+1|2n dσ ,

where en+1 = (0,0, . . . ,0,1), hold, which imply the
relation
∫

Rn

ϕ(y) dy

|x − y|n−α(x)

= 2α̃(ξ)|ξ − en+1|n−α̃(ξ)

∫

Sn

ϕ∗(σ ) dσ

|ξ − σ |n−α̃(ξ)
, (2.5)

where ϕ∗(σ ) = ϕ[s−1(σ )]
|σ−en+1|n+α̃(ξ) and α̃(ξ) = α[s−1(ξ)].

Therefore, via the stereographic projection we can
transfer many properties of spatial fractional integrals
to the case of similar spherical integrals.

2.3 About mapping properties of the fractional
operator

2.3.1 The case infα(x) > 0, supα(x) < n

The first step was done in [48] for fractional integrals

I
α(·)
Ω f (x) =

∫

Ω

f (y)dy

|x − y|n−α(x)

over bounded domains in R
n and it was to show

how this integral improves integrability properties of
a the function f , in terms of the Sobolev theorem:
I

α(·)
Ω : Lp(·)(Ω) → Lq(·)(Ω) within the framework of

variable exponent Lebesgue spaces, where q(x) is the

Sobolev exponent defined by 1
q(x)

= 1
p(x)

− α(x)
n

. We

do not give here the definition of such spaces, but refer

the reader to the book [6], see also the surveying pa-
pers [7, 24, 28, 51]. Such a variable exponent Sobolev
theorem holds when the exponents satisfy the so called
log condition (continuous with modulus of continuity
of logarithmic type).

For the corresponding fractional differentiation op-
erator

Dα(·)
Ω f (x) =

∫

Ω

f (x) − f (y)

|x − y|n+α(x)
dy, x ∈ Ω, (2.6)

in [2] it was shown that it transforms Sobolev
W 1,p(·)(Ω)-functions into Lq(·)-integrable functions
under some natural relation between p(x) and q(x).

For further results on the integrals I
α(·)
Ω f (x) in vari-

able exponent Lebesgue spaces, including the case of
unbounded domains and weighted versions we refer
for instance to [26, 42, 43, 54, 55], see also references
in [7, 24, 28, 51]. We also refer to the study of variable
order fractional integrals in variable exponent Morrey
spaces in [1, 15, 16, 27].

2.3.2 The case where α(x) may degenerate

Problems arising in the case where α(x) = 0 on some
set (of measure zero), were first resolved for the spher-
ical fractional operator (2.4) in [45] in the setting
of variable exponent Hölder spaces Hλ(·)(Sn−1). The
case of non-vanishing orders α(x) was earlier studied
in [57–59] (where also the case of generalized Hölder
spaces was studied).

In [45] complex values of α(x) were also admitted.
This more general setting together with degeneracy of
α(x) led to a certain exclusion of purely imaginary or-
ders α(x) = iθ(x):

max
x∈Sn−1

∣∣ argα(x)
∣∣ <

π

2
− ε for some ε > 0. (2.7)

Under this assumption in [45] was proved, in particu-
lar, the statement given in Theorem 2.1, below. In that
theorem, the operator α(x)Iα(·) at the points x0 where
α(x0) = 0 is interpreted as the limit α(x0)I

α(x0) =
limβ→0 βIβ . As is well known, such a limit in the case
of spatial fractional integrals is the identity operator,
up to a constant factor. The same holds in the case of
spherical integrals.

Theorem 2.1 Let α ∈ Lip(Sn−1) and the set {x ∈
S

n−1 : �α(x) = 0} have measure zero. The operator
α(x)Iα(·) acts boundedly from the space Hλ(·)(Sn−1)
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into the space Hλ(·)+α(·)(Sn−1, α), if supx∈Sn−1[λ(x)+
�α(x)] < 1.

The above mentioned tendency to the identity oper-
ator is obviously reflected in this theorem: at the points
where α(x) = 0 there is stated only the conservation
of the smoothness properties of the function f , but in
general when �α(x) → 0, the limiting operator, un-
der condition (2.7), is a singular integral operator of
Calderon–Zygmund type, also preserving the smooth-
ness properties, in general).

It is worthwhile noticing that for the corresponding
spherical fractional differentiation operator

D
α(·)f (x) = lim

ε→0

∫
S

n−1

|x−σ |≥ε

f (σ ) − f (x)

|x − σ |n−1+α(x)
dσ,

x ∈ S
n−1, (2.8)

where 0 < �α(x) < 1, a symmetrical statement holds
on mapping of Hλ(·)(Sn−1) into Hλ(·)−α(·)(Sn−1) un-
der the assumption that

min
x∈Sn−1

�α(x) > 0, max
x∈Sn−1

�α(x) < 1,

and minx∈Sn−1 �[λ(x) − α(x)] > 0, see Theorem 3.13
in [45] (for simplicity, we do not touch on the degen-
eracy cases in this result).

In fact, in [45] there was obtained a more general
statement on mapping properties within the frame-
work of generalized Hölder spaces, defined by a pre-
scribed dominant of the continuity modulus, see de-
tails in [45].

From the above statement for spherical fractional
integrals, one can derive corresponding results for spa-
tial fractional operators via relations of type (2.5).

In the above statements we saw a possibility of
pointwise variable improvement, by fractional inte-
gration, and worsening, by fractional differentiation,
of smoothness properties of functions. Does this pos-
sibility depend on the geometrical structure of the un-
derlying set? Fractional integrals of variable order may
be considered on arbitrary domains in R

n, surfaces,
manifolds, fractal sets, and in general, in the setting
of quasimetric measure spaces. In the next section we
show that such a pointwise variable estimation is pos-
sible within the framework of quasimetric measure
spaces, satisfying some natural assumptions.

3 Fractional operators over quasimetric measure
spaces

Let (X,d,μ) denote a measure space with quasimet-
ric � and a non-negative measure μ. By B(x, r) =
BX(x, r) = {y ∈ X : �(x, y) < r} we denote a ball
in X. We restrict the choice of the space (X,�,μ) by
the natural condition that all the balls B(x, r) are mea-
surable and μS(x, r) = 0 for all the spheres S(x, r) =
{y ∈ X : �(x, y) = r}, x ∈ X,r ≥ 0.

Fractional type integral operators in such a general
context may be defined in different ways:

I
α(·)f (x) =

∫

Ω

[�(x, y)]α(x)

μB(x,�(x, y))
f (y) dμ(y), (3.1)

I αf (x) =
∫

Ω

f (y)dμ(y)

μB(x,�(x, y))1−α(x)
, (3.2)

Iα(·)f (x) =
∫

Ω

f (y)dμ(y)

[�(x, y)]N−α(x)
, (3.3)

where Ω ⊆ X, α(x) > 0 and N should be thought as a
kind of dimension of X, see for instance [10, 24, 25].
These forms are equivalent in the Euclidean case (with
α(x) replaced by α(x)

N
in (3.2)), but not equivalent in

general. An arbitrary (X,�,μ) may have no “dimen-
sion”, but has the so called lower and upper dimen-
sions, which in their turn may depend on the point x.
In the case where the measure satisfies the growth con-
dition

μB(x, r) ≤ KrN as r → 0, K > 0, (3.4)

the exponent N may be used to define Iα(·)f (x) (the
exponent N is not necessarily an integer).

We mention results related to the fractional integral
(3.3), obtained in [44], which show how this operator
improves the properties of functions in terms of their
Hölder behavior, in a general setting of quasimetric
measure spaces, satisfying the growth condition (3.4).

Within the framework of the Hölder spaces
Hλ(·)(Ω) with a variable exponent, we consider the
fractional integral (3.3) and also the corresponding
fractional differentiation operator (hypersingular in-
tegral)

Dαf (x) = lim
ε→0

∫

y∈Ω:�(x,y)>ε

f (y) − f (x)

�(x, y)N+α(x)
dμ(y),

x ∈ Ω, (3.5)
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of real-valued variable order α(x) with values in the
interval 0 ≤ α(x) < 1. We assume that Ω is an open
bounded set (the case of infinite sets also may be ad-
mitted, where we have to specially study the behavior
at infinity, this study depending on what meaning we
give to Hölder behavior at infinity; we do not touch on
this issue here).

In the case of constant α a study of such operators
in the general setting of quasimetric measure spaces
(X,�,μ) with growth condition, was made in [11–14].

The estimates given in the sequel reveal the nature
of mapping properties of the operators Iα and Dα in
dependence of local values of α(x) and λ(x). We de-
note

Πα = {
x ∈ Ω : α(x) = 0

}

and suppose that μ(Πα) = 0.
As shown in [30], every quasimetric �(x, y) on a

quasimetric space (X,�) admits an equivalent quasi-
metric �1 for which there exists an exponent θ ∈ (0,1]
such that the property
∣∣�1(x, z) − �1(y, z)

∣∣

≤ M�θ
1(x, y)

{
�1(x, z) + �1(y, z)

}1−θ (3.6)

holds. When � is a metric, then � satisfies (3.6) with
θ = 1 and M = 1. Everywhere in the sequel we sup-
pose that � is already chosen as equal to �1.

For fixed x ∈ Ω we consider the local continuity
modulus

ω(f,x,h) = sup
z∈Ω:

�(x,z)≤h

∣∣f (x) − f (z)
∣∣ (3.7)

of a function f at the point x. Below we suppose that
|h| < 1 (assuming that diamX ≥ 1).

For a function λ(x) defined on Ω we suppose that
λ− := infx∈X λ(x) > 0, and λ+ := supx∈X λ(x) < 1,

and by Hλ(·)(Ω) denote the space of functions f ∈
C(Ω) such that ω(f,x,h) ≤ Chλ(x). Equipped with
the norm

‖f ‖Hλ(·)(Ω) = ‖f ‖C(Ω) + sup
x∈Ω

sup
h∈(0,1)

ω(f, x,h)

hλ(x)
,

this is a Banach space.
In Hölder norm estimations of functions Iαf , the

case

Iα(x) := Iα(1)(x) =
∫

Ω

dμ(z)

�(x, z)N−α(x)
(3.8)

of the fractional integral of a constant function f ≡ 1
plays an important role. Since Ω is bounded, it is
well defined. In the case of constant order, α(x) =
α = const, the following notion is known: a set Ω

is said to satisfy the cancellation property with re-
spect to the fractional integral, if

∫
Ω

[ 1
�(x,z)N−α −

1
�(y,z)N−α(x) ]dμ(z) for all x, y ∈ Ω , i.e. the fractional

integral of a constant is also a constant (when Iα(x) is
well defined).

The cancellation property holds for Ω = X = R
N .

Among bounded sets the sphere X = S
n−1 is another

example. Note that for variable orders α(x) the can-
cellation property fails even in these examples (see
for instance [11] about the importance of the cancella-
tion property for mapping properties of fractional inte-
grals of constant order in Hölder spaces on quasimetric
measure spaces.

When we consider the whole space Hλ(·)(Ω), i.e.
we do not consider for instance, a subspace of func-
tions vanishing on the boundary, the condition

Iα(1) ∈ Hλ(·)+α(·)(Ω)

is necessary for the mapping Iα : Hλ(·)(Ω) →
Hλ(·)+α(·)(Ω) to hold. However, this condition seldom
holds, because Iα(1)(x) has a worse behavior when x

approaches the boundary: Iα(1) ∼ c[δ(x, ∂Ω)]α(x) in
general, where δ(x, ∂Ω) is the distance to the bound-
ary (for constant α and the Euclidean case see [8]).
therefore, a natural setting for mapping in Hölder
spaces should involve functions f vanishing on the
boundary. We do not touch on such a setting in this
overview, but impose another condition, see (3.13),
which does not require that functions f vanishes on
the boundary, but instead the order α(x) does.

What we need is based on the following weighted
estimate of the local continuity modulus of the frac-
tional integral Iαf via that of the function f itself,
where the used weight is exactly the function α(x).

Theorem 3.1 I. Let Ω be a bounded open set in X,
d = diamΩ , let α satisfy the log-condition and
0 ≤ infx∈Ω α(x) ≤ supx∈Ω α(x) < min(θ,N). Then
for all x ∈ Ω\Πα the following Zygmund type esti-
mate is valid:

ω
(
αIαf, x,h

) ≤ Chα(x)ω(f, x,h)

+ Chθ

∫ d

h

ω(f, x, t) dt

t1+θ−α(x)
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+ Cω(α,x,h)

∫ d

h

ω(f, x, t) dt

t2−α(x)

+ Cω(αIα, x,h)‖f ‖C(Ω). (3.9)

II. Let α(x) satisfy the log-condition and 0 ≤
infx∈Ω α(x) ≤ maxx∈Ω α(x) < 1. If f ∈ C(Ω), then
for all x, y ∈ Ω with �(x, y) < h such that α(x) �= 0
and α(y) �= 0, the following estimate is valid:
∣∣(Dαf

)
(x) − (

Dαf
)
(y)

∣∣

≤ C

min(α(x),α(y))

×
∫ h

0

[
ω(f,x, t)

t1+α(x)
+ ω(f,y, t)

t1+α(y)

]
dt

+ C

∫ 2

h

[
ω(α,x,h) + hθ t1−θ

]ω(f,x, t) dt

t2+α(x)
.

(3.10)

From these estimates one can easily derive the fol-
lowing statements on the mapping properties, where
Hλ(·)+α(·)(Ω,α) = {f : α(x)f (x) ∈ Hλ(·)+α(·)(Ω)}.

Theorem 3.2 Let

α(x) ≥ 0, max
x∈Ω

α(x) < min(θ,N),

α(x) ∈ Lip(Ω),

(3.11)

and

sup
x∈Ω

[
λ(x) + α(x)

]
< θ. (3.12)

If

αIα ∈ Hλ(·)+α(·), (3.13)

then the operator Iα(·) is bounded from the space
Hλ(·)(Ω) into the weighted space Hλ(·)+α(·)(Ω,α).

Theorem 3.3 Under the condition (3.11), the opera-
tor Dα(·) is bounded from the space Hλ(·)(Ω) into the
space Hλ(·)−α(·)(Ω), if

0 < inf
x∈Ω

{
λ(x) − α(x)

}
, sup

x∈Ω

λ(x) < 1.
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