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1. INTRODUCTION {sec1:v57
Consider the following multidimensional integral equation of the first kind:

Mαϕ :=
ˆ

Rn

c(x, y)
|x − y|n−α

ϕ(y) dy = f(x), x ∈ R
n, (1.1) {eq1.1:v5

where 0 < α < 1 and it is assumed that the function c(x, y) satisfies the following conditions:

1) we have

c(x, y) ∈ C(Rn × R
n), c(x, x) ∈ L∞(Rn), inf

x∈Rn
|c(x, x)| > 0; (1.2) {eq1.2:v5

2) the function c(x, y) obeys Hölder’s condition with respect to the first variable (in R
n, compactified

by one point at infinity) and uniformly with respect to the second variable, i.e.,

|c(x, y) − c(z, y)| ≤ C|x − z|λ
(1 + |x|)λ(1 + |z|)λ , α < λ ≤ 1, (1.3) {eq1.3:v5

where C > 0 is independent of x, y, z;

Note that relations (1.2), (1.3) imply that c(x, y) ∈ L∞(Rn × R
n).

It is known (see [1], [2], [3, Chap. 10]) that the hypersingular operator

Rf =
µ

c(x, x)
lim
ε→0
(Lp)

ˆ
Rn

f(x) − f(x − y)
|y|n+α

dy, (1.4) {eq1.4:v5
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where

µ =
α

2πn+1
sin

απ

2
Γ
(

n − α

2

)
Γ
(

n + α

2

)
,

while the limit is understood in the sense of strong convergence in Lp(Rn) and is the regularizer for
Eq. (1.1) in the space Lp(Rn), i.e.,

RMαϕ = ϕ + Aϕ, (1.5) {eq1.5:v5

where A is an operator compact in the space Lp(Rn), 1 < p < n/α.
Regularization of the form (1.5) of Eq. (1.1) in the space Lp(Rn) was proved in [2] also in the case

1 ≤ α < n. The study of this case involves hypersingular integrals of higher order; see [3] with regard to
hypersingular integrals of arbitrary order.

In this paper, we consider the case 0 < α < 1 and extend this result concerning regularization to
the case of Lebesgue spaces Lp( · )(Rn) with variable exponent, taking into account recent progress in
the theory of such spaces; in the case 1 ≤ α < n, a similar generalization involves significant technical
difficulties and is not touched upon in this paper.

The first paper specially dealing with Lebesgue spaces Lp( · )(Ω) with variable exponent was the
paper [4] (in the one-dimensional case), and a subsequent development, including the multidimensional
case, was given in [5]. The generalized Lebesgue spaces Lp( · )(Ω) with variable exponent have turned out
to be a convenient apparatus in the study of models with so-called nonstandard growth (for example, in
elasticity theory, hydromechanics, differential equations (in particular, equations with p(x)-Laplacian),
and variational problems; see, for example, [6]–[8]).

These applications stimulated rapid progress in the theory of the spaces Lp( · )(Ω); see the surveys [9]–
[12], where further references can be found.

Although the spaces Lp( · )(Ω) possess a number of undesirable properties (the spaces Lp( · )(Ω) are
not translation-invariant, functions in these spaces are not p(x)-continuous in the mean, Young’s
theorem for convolutions does not hold) there is a significant progress in their study and in the
construction of harmonic analysis in these spaces stimulated by the applications pointed out above.
This progress became possible for continuous exponents p(x) satisfying the Dini logarithmic condition.

The greatest progress in the development of harmonic analysis and operator theory in the
spaces Lp( · )(Ω) involving the boundedness of the maximal operator was attained under conditions (2.5)
and (2.6) (plus condition (2.7) in the case of unbounded sets Ω).

In Sec. 2, we give necessary preliminaries dealing with the Lebesgue spaces Lp( · )(Ω) with variable
exponent and some auxiliary statements. Section 3 contains the statement of the main result. In Sec. 4,
we give an estimate of the kernel of an integral operator A in (1.5) in connection with the fact that
the well-known estimate of this kernel given in [3, Chap. 10] is insufficient for working in spaces with
variable exponent. Using this estimate, we prove the main statement of this paper in Sec. 5.

By C, c, c1, . . . we denote absolute positive constants that can take different values even in the same
row.

2. PRELIMINARIES {sec2:v57
2.1. On Lebesgue Spaces with Variable Exponent

{ssec2.1:
Let us present definitions and some main facts for the spaces Lp( · )(Ω); for more details, we refer the

reader to [13], [5], [14]. Suppose that Ω ⊆ R
n is an open set, p : Ω → [1,∞) is a measurable function

on Ω, and

p− = ess infx∈Ω p(x), p+ = ess supx∈Ω p(x).

By Lp( · )(Ω) we denote the set of all measurable (on Ω) functions f for which the modular expression

Ip(f) :=
ˆ

Ω
|f(x)|p(x) dx < ∞
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80 SAMKO, UMARKHADZHIEV

is finite. Under the condition 1 ≤ p(x) ≤ p+ < ∞ on Ω, we have a Banach space with respect to the
norm

‖f‖p( · ) = inf
{

λ > 0 :
ˆ

Ω

∣∣∣∣f(x)
λ

∣∣∣∣
p(x)

dx ≤ 1
}

. (2.1) {eq2.1:v5

The weighted space Lp( · )(Ω, �) is introduced in the ordinary way:

Lp( · )(Ω, �) = {f : �f ∈ Lp( · )(Ω)}, ‖f‖Lp( · )(Ω,�) = ‖�f‖p( · ).

Let p′(x) denote the conjugate exponent: 1/p(x) + 1/p′(x) = 1. Hölder’s inequality holds in the
following form: ∣∣∣∣

ˆ
Ω

f(x)g(x) dx

∣∣∣∣ ≤ k‖f‖p( · )‖g‖p′( · ), k =
1
p−

+
1
p′−

. (2.2) {eq2.2:v5

It is well known that, under the condition 1 ≤ p− ≤ p(x) ≤ p+ < ∞, modular boundedness (conver-
gence) is equivalent to boundedness (convergence) in the norm:

c1 ≤ ‖f‖p( · ) ≤ c2 =⇒ c3 ≤ Ip(f) ≤ c4, (2.3) {eq2.3:v5

C1 ≤ Ip(f) ≤ C2 =⇒ C3 ≤ ‖f‖p( · ) ≤ C4, (2.4) {eq2.4:v5

where

c3 = min(cp−
1 , cp+

1 ), c4 = max(cp−
2 , cp+

2 ),

C3 = min(C1/p−
1 , C

1/p+

1 ), C4 = max(C1/p−
2 , C

1/p+

2 ).

In what follows, we assume that the following condition holds:

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ Ω. (2.5) {eq2.5:v5

It is well known that, in the theory of the spaces Lp( · )(Ω), an important role is played by the condition

|p(x) − p(y)| ≤ C

ln(1/|x − y|) for all x, y ∈ Ω, |x − y| ≤ 1
2

, (2.6) {eq2.6:v5

where C is independent of x and y; this condition is known as the local log-condition or the weak
Lipschitz condition, or the Dini–Lipschitz condition and, in the case where the set Ω is unbounded,
it is also known as a condition linking p(x) with a constant: there exists a constant p∞ also denoted
by p(∞) such that

|p(x) − p∞| ≤ C

ln(2 + |x|) , x ∈ Ω. (2.7) {eq2.7:v5

Let P(Ω) denote the set of measurable functions p : Ω → [1,∞) satisfying condition (2.5) and
(if Ω is unbounded) also condition (2.7); let P(Rn) be the set of functions p : R

n → [1,∞) satisfying
conditions (2.5), (2.6) and (if Ω is unbounded) also condition (2.7). Obviously, P(Ω) ⊂ P(Ω).

2.2. On the Interpolation of Compactness in the Case of a Variable p(x) {ssec2.2:
In 1960, Krasnosel’skii [15] showed the possibility of “one-sided” interpolation of the compactness

property in the spaces Lp with constant p. The proof in [15] assumed that the sets Ω are bounded.
However, such interpolation is also possible in the case of unbounded sets and in more general
interpolation settings within the framework of interpolating pairs of general Banach spaces. For results
obtained under various assumptions on interpolating pairs, see, for example, [16]–[20].

For the spaces Lp( · )(Ω), the interpolation space is Lpθ( · )(Ω), where

1
pθ(x)

=
θ

p1(x)
+

1 − θ

p2(x)
, θ ∈ [0, 1]. (2.8) {eq2.8:v5

On the basis of results from [20], such a one-sided interpolation of compactness was established in [21]
in the following form.
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{th1:v575

Theorem 1. Let Ω ⊆ R
n be an open set, and let the variable exponents pj : Ω → (1,∞), j = 1, 2,

satisfy conditions (2.5)–(2.7). Let the linear operator A defined on Lp1( · )(Ω) ∪ Lp2( · )(Ω) be
bounded in the spaces Lpj( · )(Ω), j = 1, 2. If it is compact in the space Lp1( · )(Ω), then it is also
compact in the space Lpθ( · )(Ω) for any θ ∈ (0, 1].

In applications, it is convenient to use the following statement obtained from Theorem 1 (see [22]).
{th2:v575

Theorem 2. Suppose that Ω ⊆ R
n, the function p : Ω → [1,∞), p(x) satisfies the inequalities

1 ≤ p− ≤ p(x) ≤ p+ < ∞,

and the number p0 belongs to (1,∞). Then there exists a function q : Ω → [1,∞) with the same
property

1 < q− ≤ q(x) ≤ q+ < ∞

and a number θ ∈ [0, 1) such that Lp( · )(Ω) is an interpolation space between Lp0(Ω) and Lq( · )(Ω)
corresponding to the interpolation parameter θ. The number θ can take any value in the interval
θ ∈ (0, θ0), where

θ0 = min
{

1,
p0

p+
,
p′0
p′−

}
,

and then

q(x) =
p0(1 − θ)p(x)
p0 − θp(x)

.

The effectiveness of the last statement for applications is obvious: it allows us to immediately obtain
compactness in the space Lp( · ) with variable exponent with the only requirement of boundedness for
variable exponents, and with the knowledge of compactness only for constant exponents.

3. MAIN STATEMENT
{sec3:v57

Let

p�(x) =
np(x)

n − αp(x)

denote the Sobolev exponent. If p ∈ P(Rn), then p� ∈ P(Rn) in the case αp+ < n.

In the following theorem, the hypersingular operator R is expressed as

Rf =
µ

c(x, x)
lim
ε→0

(Lp( · ))

ˆ
Rn

f(x) − f(x − y)
|y|n+α

dy, (3.1) {eq3.1:v5

where the limit is understood in the sense of strong convergence in Lp( · )(Rn).
{th3:v575

Theorem 3. Suppose that 0 < α < 1, the function c(x, z) satisfies conditions (1.2), (1.3), and
p ∈ P(Rn) and αp+ < n. Then representation (1.5) is valid; in it, the operator A is bounded from
the space Lp( · )(Rn) to the space Lp( · )(Rn) ∩ Lp�( · )(Rn) and is compact in the space Lp( · )(Rn).
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82 SAMKO, UMARKHADZHIEV

4. AUXILIARY STATEMENTS {sec4:v57
4.1. On the Operator A

{ssec4.1:
For the composition RMα, it is well known that the operator A in the representation (1.1) is of the

form

(Aϕ)(x) :=
ˆ

Rn

K(x, x − y)ϕ(y) dy, (4.1) {eq4.1:v5

where

K(x, y) =
µ

c(x, x)

ˆ
Rn

c(x, y) − c(ξ, y)
|x − ξ|n+α|y − ξ|n−α

dy. (4.2) {eq4.2:v5

Obviously, in the case where the function c(x, y) satisfies condition (1.3), the kernel K(x, y) admits
the estimate

|K(x, y)| ≤ C

(1 + |x|)λ
ˆ

Rn

dξ

|ξ|n+α−λ|y − ξ|n−α(1 + |x − ξ|)λ , (4.3) {eq4.3:v5

where the integral converges for 0 < α < λ.

4.2. Estimate of the Kernel {ssec4.2:{lem1:v57
Lemma 1. Suppose that 0 < α < n and α < λ < n + α. Then the integral in (4.3) admits the
estimate ˆ

Rn

dξ

|ξ|n+α−λ|y − ξ|n−α(1 + |x − ξ|)λ ≤ c

|y|n−α
, x, y ∈ R

n. (4.4) {eq4.4:v5

Proof. Let I(x, y) denote the integral on the left-hand side of (4.4). Let us split this integral as follows:

I(x, y) =
ˆ
|ξ|<|y|/2

dξ

|ξ|n+α−λ|y − ξ|n−α(1 + |x − ξ|)λ

+
ˆ
|ξ|>|y|/2

dξ

|ξ|n+α−λ|y − ξ|n−α(1 + |x − ξ|)λ =: B1 + B2.

For B1, let us use the fact the inequalities

|y − ξ| ≥ |y| − |ξ| ≥ |y|
2

.

Then

B1 ≤ C

|y|n−α

ˆ
Rn

dξ

|ξ|n+α−λ(1 + |x − ξ|)λ

and it remains to use the fact that the last integral is bounded as a function of x; see, for example, [3,
Lemma 1.38]).

To estimate B2, let us use Hölder’s inequality with exponent r > 1, which will be defined below. We
have

B2 ≤
{ˆ

|ξ|>|y|/2

dξ

(1 + |x − ξ|)λr

}1/r{ˆ
|ξ|>|y|/2

dξ

|ξ|(n+α−λ)r′ |y − ξ|(n−α)r′

}1/r′

:= J
1/r
1 J

1/r′

2 , (4.5) {eq4.5:v5

where 1/r + 1/r′ = 1. Choose r > 1 so that the two integrals J1 and J2 converge:

λr > n, (n − α)r′ < n, (2n − λ)r′ > n,
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which implies

max
(

0,
λ − n

n

)
<

1
r

< min
(

1,
α

n

)
. (4.6) {eq4.6:v5

This interval is not empty for λ < n + α. We assume that r has been chosen from (4.6).

For |y| ≤ 1, we have J1 ≤ const, x ∈ R
n. For |y| > 1, we obtain

J1 ≤ c

ˆ
|ξ|>|y|/2

dξ

|ξ|λr
= c|y|n−λr,

so that

J1 ≤ c

{
1, |y| ≤ 1,
|y|n−λr, |y| > 1.

(4.7) {eq4.7:v5

Performing a similarity transformation ξ = |y|τ in the integral J2, we obtain

J2 = c|y|n−(2n−λ)r′
ˆ
|τ |>1/2

dτ

|τ |(n+α−λ)r′ |y/|y| − τ |(n−α)r′
.

Hence

J2 = c|y|n−(2n−λ)r′ , x, y ∈ R
n. (4.8) {eq4.8:v5

Then, using (4.5) and taking into account estimates (4.7) and (4.8), for x, y ∈ R
n we obtain

B2 ≤ C

{
|y|−n−n/r+λ, |y| ≤ 1,
|y|−n, |y| > 1.

(4.9) {eq4.9:v5

The required inequality B2 ≤ c|y|α−n is valid under the appropriate choice of r from the condition

−n − n

r
+ λ ≥ α − n, i.e.,

1
r
≤ λ − α

n
.

Such a choice is compatible with condition (4.6) for α < n, which proves the lemma.

Corollary. Let 0 < α < 1, and let the function c(x, y) satisfy condition (1.3) with α < λ ≤ 1. Then
the kernel K(x, x − y) of the operator (4.1) admits the estimate

|K(x, x − y)| ≤ C

(1 + |x|)λ|x − y|n−α
. (4.10) {eq4.10:v

In order to prove this statement, it suffices to refer to inequality (4.3) and estimate (4.4).

4.3. The Hardy–Stein–Weiss Inequality with a Variable Exponent p(x)
{ssec4.3:

In [23], the following Hardy–Stein–Weiss inequality with a variable exponent p(x) was proved (see
Theorem A in [23]): ∥∥∥∥|x|β−α

ˆ
Ω

f(y) dy

|y|β |x − y|n−α

∥∥∥∥
p( · )

≤ c‖f‖p( · ), 0 ∈ Ω, (4.11) {eq4.11:v

under the assumption that Ω is a bounded domain in R
n, p ∈ P(Ω), and

0 < α < n, α − n

p(0)
< β <

n

p′(0)
.

In the following lemma, we justify the validity of a similar inequality for the case Ω = R
n.
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{lem2:v57
Lemma 2. Inequality (4.11) holds also in the case of an unbounded domain Ω if p ∈ P(Ω) and

0 < α < n, α − n

p(0)
< β <

n

p′(0)
, α − n

p(∞)
< β <

n

p′(∞)
. (4.12) {eq4.12:v

Proof. Assume that the function f is nonnegative and is extended by zero beyond Ω. Following
arguments from [23], we obtain

|x|β−α

ˆ
Ω

f(y) dy

|y|β |x − y|n−α
= |x|β−α

ˆ
|y−x|≤2|x|

f(y) dy

|x − y|n−α
+ |x|β−α

ˆ
|y−x|≥2|x|

f(y) dy

|y|β |x − y|n−α

:= Aα,βf(x) + Bα,βf(x).

As shown in [23], Aα,βf(x) satisfies the pointwise estimate

Aα,βf(x) ≤ cMβf(x), where Mβf = sup
r>0

|x|β
rn

ˆ
|y−x|<r

|f(y)|
|y|β dy, (4.13) {eq4.13:v

is the Hardy–Littlewood maximal weight function (the proof of this fact in [23] did not use the fact of
the fact that Ω is a bounded set). Therefore, the boundedness of the operator Aα,β in Lp( · )(Ω) under
conditions (4.12) is a consequence of well-known results on the weighted boundedness of the maximal
operator in the spaces Lp( · )(Ω); see [24, Theorem C].

As to the operator Bα,β , note that it follows from the inequality |x − y| ≥ 2|x| that

|y| ≥ |x − y| − |x| ≥ |x − y| − |x − y|
2

=
|x − y|

2
,

i.e.,

{y : |x − y| > 2|x|} ⊂ {y : |x − y| < 2|y|}, (4.14) {eq4.14:v

and then

Bα,βf(x) ≤ |x|β−α

ˆ
|y−x|≤2|y|

f(y) dy

|y|β|x − y|n−α
:= Bα,βf(x),

so that it suffices that the operator Bα,β be bounded. It remains to note that the operator adjoint to Bα,β

is

B∗
α,β = Aα,α−β.

In view of estimate (4.13), the boundedness conditions for the operator B∗
α,β in the dual space Lp′( · )(Ω)

coincide with conditions (4.12), which proves Lemma 2.

Remark. For another version of the Stein–Weiss weighted inequality with a variable exponent p(x)
from Lp( · )(Rn) to Lpα( · )(Rn), see [25, Theorem A].

5. PROOF OF THEOREM 3 {sec5:v57
Let us prove the following theorem, from which Theorem 3 readily follows.

{th4:v575
Theorem 4. Suppose that 0 < α < n, λ ≥ α, and p ∈ P(Rn). Under the condition αp+ < n, the
operator

(Kϕ)(x) :=
1

(1 + |x|)λ
ˆ

Rn

ϕ(y) dy

|x − y|n−α

is bounded as an operator from Lp( · )(Rn) to

Lp( · )(Rn) ∩ Lp�( · )(Rn, �), �(x) = (1 + |x|)λ, p�(x) =
np(x)

n − αp(x)
.
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Proof. The boundedness of the operator K from Lp( · )(Rn) to Lpα( · )(Rn, �) is a trivial consequence of
Sobolev’s theorem for the Riesz potential

g(x) :=
ˆ

Rn

ϕ(y) dy

|x − y|n−α

for variable exponents p ∈ P(Rn) and the whole space R
n; this fact was proved in [26] under the condition

αp+ < n (see Corollary 2.12 in [26]).
Under the assumptions (4.12), the boundedness of the operator K in Lp( · )(Rn) follows from

Lemma 2 (with β = 0). Note that, in the case λ > α, the boundedness in Lp( · )(Rn) under the condition
αp+ < n can easily be obtained from Hölder’s inequality without using such tools as the Hardy–Stein–
Weiss inequality. Indeed, in view of the linearity of the operator K and relations (2.3) and (2.4), it suffices
to show that

|Ip(Kϕ)| ≤ c for all ϕ(x), ‖ϕ‖p( · ) ≤ 1.

We have

Ip(Kϕ)(x) =
ˆ

Rn

[a(x)g(x)]p(x) dx, where a(x) = (1 + |x|)−λ.

Applying Hölder’s inequality (2.2) with variable exponent r(x) = p�(x)/p(x), 1 < r− ≤ r+ < ∞, we
obtain

Ip(Kϕ) ≤ k
∥∥|g( · )|p( · )∥∥

r( · )
∥∥[a( · )]p( · )∥∥

r′( · ).

In view of relations (2.4) and the Sobolev’s theorem for variable exponents (mentioned above), we have∥∥|g( · )|p( · )∥∥
r( · ) ≤ C for ‖ϕ‖p( · ) ≤ 1,

while, in view of the same relations (2.4), the second multiplier ‖[a( · )]p( · )‖r′( · ) is a finite constant,
because λp(x)r′(x) = λn/α > n.

Proof of Theorem 3. To show the validity of the representation (1.5) with the operator A in the
form (4.1) on the functions ϕ ∈ Lp( · )(Rn) and the operator R expressed in the form (3.1), in view of
the boundedness of the operator A (proved below), it suffices to note that the composition RM with the
operator R expressed as (4.6), is bounded in Lp( · )(Rn). This follows from the fact that the operator M is
bounded from Lp( · )(Rn) to the space of Riesz potentials Iα[Lp( · )(Rn)], which can be shown in the same
way as for a constant exponent p in [3, Chap. 10] if we take into account the estimates of the truncated
hypersingular integrals obtained for the space Lp( · )(Rn) in [27], [28], after which it remains to use the
boundedness of R : Lp( · )(Rn) → Iα[Lp( · )(Rn)], which was proved in [27].

In view of Lemma 1, the boundedness of the operator A follows from Theorem 4.
To prove the compactness of the operator A in the space Lp( · )(Rn), we proceed as follows.

Using Theorem 2, for the space Lp( · )(Rn) under consideration, we construct the interpolating pair of
spaces Lp0(Rn) and Lq( · )(Rn); the first space has a constant exponent p0 = p+, while the second space
has exponent

q(x) =
p+(1 − θ)p(x)
p+ − θp(x)

.

Since p+ < n/α, in view of results from [2], the operator A is compact in Lp+(Rn). The boundedness of
the operator A in the space Lq( · )(Rn) can be obtained from the first part of Theorem 3. To this end, it is
necessary to verify the validity of the conditions q ∈ P(Rn) and q+ < n/α.

1) In view of Theorem 2, the inequalities 1 < q− ≤ q(x) ≤ q+ < ∞ and x ∈ R
n, are valid.

2) Let us prove the inequality

|q(x) − q(y)| ≤ A

ln(1/|x − y|) for all x, y ∈ R
n, |x − y| ≤ 1

2
.
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We have

|q(x) − q(y)| = (1 − θ)
|p(x) − p(y)|

|1 − θp(x)/p+||1 − θp(y)/p+|
| ≤ A

ln(1/|x − y|) . (5.1) {eq5.1:v5

3) The inequality

|q(x) − q∞| ≤ A

ln(2 + |x|) , x ∈ R
n,

is proved just as above.

4) The inequality q+ < n/α can also be verified directly:

1
q(x)

=
1

1 − θ

(
1

p(x)
− θ

p+

)
≥ 1

1 − θ

(
1
p+

− θ

p+

)
=

1
p+

.

Thus, the operator A is compact in the space Lp+(Rn) and is bounded in the space Lq( · )(Rn).
Therefore, by Theorem 1, it is compact in the interpolation space Lp( · )(Rn).

Theorem 3 is proved.
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6. L. Diening and M. Ružička, “Calderón–Zygmund operators on generalized Lebesgue spaces Lp(·) and
problems related to fluid dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).
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