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VARIABLE EXPONENT HARDY AND
CARLEMAN-KNOPP INEQUALITIES

S. SAMKO

Abstract. The well known Lp(R+) → Lq(R+)-Hardy inequalities
with power weights are known to be extended to the case of variable
exponent setting Lp(·)(R+) → Lq(·)(R+). In the case p(0) = p(∞)
and q(0) = q(∞) we give an estimation of the constants arising in this
extension in dependence on the values of p(∞), inf p(x) and the values
of the exponents Ap, Aq from the decay conditions at the origin and
infinity. The obtained estimate enables us to use dilation arguments
to derive the variable exponent Carleman-Knopp inequality from the
variable exponent Hardy inequality.

îâäæñéâ. ßŽîáæï ùêëĲæèæ Lp(R+) → Lq(R+) ûëêæŽêæ ñðë-
èëĲŽ ýŽîæïýëãŽêæ ûëêâĲæå àŽêäëàŽáâĲñèæŽ ùãèŽáéŽøãâêâĲèæŽêæ
èâĲâàæï ïæãîùââĲöæ. îëùŽ p(0) = p(∞) áŽ q(0) = q(∞) øãâê ãæú-
èâãæå öâïŽĲŽéæï ñðëèëĲâĲöæ éñáéæãâĲæï öâòŽïâĲŽï. âï ñçŽêŽïçêâ-
èæ ïŽöñŽèâĲŽï àãŽúèâãï ùãèŽáéŽøãâêâĲèæŽêæ ßŽîáæï ñðëèëĲæáŽê
àŽéëãæõãŽêëå ùãèŽáéŽøãâêâĲèæŽêæ çŽîèâéŽê-çêëìæï ñðëèëĲŽ.

1. Introduction

Many classical inequalities have been extended to the case of Lebesgue
and other function spaces with variable exponent, for instance, inequalities
for Hardy, maximal, singular and potential operators. We refer to the book
[2] and surveying articles [11], [12], [16] and recall that the main difficulties
in such an extension are caused by the absence of the main classical tools
valid for constant exponents. Among them we mention the non-invariance
of variable exponent Lebesgue spaces with respect to translations and dila-
tions, the failure of the Young theorem for convolutions, non equivalence of
norm and modular inequalities.

The classical Carlemann-Knopp inequality
∞∫

0

exp

(
1
x

x∫

0

ln |f(t)| dt

)
dx ≤ e

∞∫

0

|f(x)| dx (1.1)
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was generalized in various directions by many authors, including weighted
cases and p → q-versions, see for instance [6], [7], [8], [9], [15] and references
therein.

The goal of this paper is to show that in the case of variable exponents
there hold the inequalities

∥∥∥∥∥ exp

(
(1− α)xα−1

x∫

0

ln f(y)
yα

dy

)∥∥∥∥∥
Lp(·)(R+)

≤

≤ C‖f‖Lp(·)(R+), α < 1− 1
p(∞)

, (1.2)

∥∥∥∥∥ exp

(
βxβ

∞∫

x

ln f(y)
yβ+1

dy

)∥∥∥∥∥
Lp(·)(R+)

≤

≤ C‖f‖Lp(·)(R+), 0 < β < 1 (1.3)

of “Carleman–Knopp type” at the least under some assumptions on p(0) and
p(∞). To this end, we use the known ([7]–[9]) idea of treating the Carleman-
Knopp inequality as the limiting case of the Hardy inequality derived by
dilation arguments with respect to the exponent p. Note that in the case of
variable exponents such limiting cases are even of more interest because of
the differences between the modular and norm inequalities.

To exploit this idea, we need Hardy inequalities in variable exponent
Lebesgue spaces. Such inequalities have been proved in [3] (see also [1], [5],
[13], where the multidimensional versions of the variable exponent Hardy
inequalities may be found). These Hardy inequalities were obtained without
an estimation of the arising constants . However, to be able to apply Hardy
→ Carleman-Knopp dilation arguments, we need to know dependence of
these constants on the values of the exponent p(x). By this reason we
spend special efforts in this paper to refine the inequalities from [3] by
providing an estimation of the constants arising in the variable exponent
Lp(·) − Lq(·)-boundedness of the Hardy operators

Hα,µf(x) = xα+µ−1

x∫

0

f(y) dy

yα
, Hβ,µf(x) = xβ+µ

∞∫

x

f(y) dy

yβ+1
. (1.4)

The paper is organized as follows. In Section 2 we recall some defini-
tions from the theory of variable exponent Lebesgue spaces and refine some
known estimates. In Section 3 we give an estimation of the norm of convo-
lution operators k ∗ f in variable exponent Lebesgue spaces, in terms of the
constants Ap from the decay condition of the exponent p(x) and the norms
‖f‖r for certain values of r. In Section 4 we apply the results of Section 3 to
prove estimates for the constants in variable exponent Hardy inequalities,
similarly in terms related to p(x). The estimates of this section with µ = 0
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are finally used in the last subsection to prove the result on the inequalities
(1.2)–(1.3).

2. Estimation of Norms of Some Embeddings for Variable
Exponent Lebesgue Spaces

The notation P(Rn) in the sequel stands for the class of variable expo-
nents, i.e. measurable functions p : Rn → [1,∞] (in general, unbounded).
The variable exponent space Lp(·)(Rn) with p ∈ P(Rn) is defined in the
standard way, see for instance, [2], p. 73:

‖f‖p(·) := ‖f‖Lp(·)(Rn) = inf

{
λ > 0 :

∫

Rn

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

≤ 1

}
. (2.1)

We use the standard notation:

p− = inf
x∈Rn

p(x), p+ = sup
x∈Rn

p(x).

2.1. On known embeddings.

Lemma 2.1. Let p, q ∈ P(Rn) and q(x) ≤ p(x) almost everywhere, and
1

r(x)
:=

1
q(x)

− 1
p(x)

. (2.2)

If 1 ∈ Lr(·)(Rn), then

‖f‖q(·) ≤ 2
1

q− ‖1‖r(·) ‖f‖p(·). (2.3)

Proof. The embedding (2.3) is known (see Lemma 3.3.1 in [2]) in the form

‖f‖q(·) ≤ 2‖1‖r(·) ‖f‖p(·). (2.4)

To get (2.3), we use the relation
∥∥f

1
α

∥∥α

αp(·) = ‖f‖p(·), α > 0, (2.5)

valid for the norm (2.1) with p ∈ P(Rn). Since αq(x) ≤ αp(x), we ap-
ply the inequality (2.4) to the function f

1
α with respect to the norms

‖ · ‖αq(·) and ‖ · ‖αp(·), which is possible when α ≥ 1
q−

and get ‖f 1
α ‖αq(·) ≤

2‖1‖αr(·)‖f 1
α ‖αp(·). Then we again use (2.5) and arrive at ‖f‖q(·) ≤

2α‖1‖r(·)‖f‖p(·). It remains to choose the best possible value α = 1
q−

. ¤

We use the standard norms

‖f‖X∩Y = max
{‖f‖X , ‖f‖Y

}
, ‖f‖X+Y := inf

f=g+h,
g∈X,h∈Y

(‖g‖X + ‖h‖Y

)

for the intersection X ∩ Y and the sum X + Y := g + h : g ∈ X, h ∈ Y of
two Banach spaces.
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Lemma 2.2 (See Theorem 3.3.11 in [2]). Let p1, p2, p3 ∈ P(Rn) and
p1(x) ≤ p2(x) ≤ p3(x) almost everywhere on Rn. Then

Lp1(·)(Rn) ∩ Lp3(·)(Rn) ↪→ Lp2(·)(Rn) ↪→ Lp1(·)(Rn) + Lp3(·)(Rn) (2.6)

with
1
2
‖f‖Lp1(·)+Lp3(·) ≤ ‖f‖Lp2(·) ≤ 2

1
(p1)− ‖f‖Lp1(·)∩Lp3(·) . (2.7)

By P∞(Rn) we denote the class of bounded measurable functions with
values in [1,∞] which satisfy the decay condition for some p∞ ∈ [1,∞]. The
decay condition will be always taken in the form∣∣∣∣

1
p∞

− 1
p(x)

∣∣∣∣ ≤
Ap

ln(e + |x|) . (2.8)

We also write p∞ = p(∞) in case p ∈ P∞(Rn).
In the sequel, following [2], we use the notation

m∞(x) = min{p(x), p∞} and M∞(x) = max{p(x), p∞}.
Lemma 2.3. Let p ∈ P∞(Rn) and

1
s(x)

:=
∣∣∣∣

1
p(x)

− 1
p∞

∣∣∣∣ . (2.9)

Then
LM∞(·)(Rn) ↪→ Lp(·)(Rn) ↪→ Lm∞(·)(Rn) (2.10)

if and only if
1 ∈ Ls(·)(Rn) (2.11)

and then

‖f‖m∞(·) ≤ 2
1

p− ‖1‖Lp̃1(·) ‖f‖p(·), (2.12)

‖f‖p(·) ≤ 2
1

p− ‖1‖p̃2(·) ‖f‖M∞(·), (2.13)

where p̃1(x) and p̃2(x) are variable exponents defined by

1
p̃1(x)

:= max
{

0,
1

p∞
− 1

p(x)

}
,

1
p̃2(x)

:= max
{

0,
1

p(x)
− 1

p∞

}
. (2.14)

Proof. This lemma is a slight revision of Lemma 3.3.5 from [2]. The equiv-
alence between (2.10) and (2.11) was proved in Lemma 3.3.5 in [2], the
constants arising in (2.12) appear from the arguments there: let Π+ = {x ∈
Rn : p(x) ≥ p∞} and Π− = Rn\Π+, so that 1

s(x) =

{
1

p̃1(x) , x ∈ Π+
1

p̃2(x) , x ∈ Π−
.

As shown in [2] (p. 84), condition (2.11) implies that 1 ∈ Lp̃1(·)(Rn) ∩
Lp̃2(·)(Rn), so that Lemma 2.1 is applicable, from which we easily derive
(2.12)–(2.13). ¤
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Remark 2.4. Let p ∈ P∞(Rn). Then 1 ∈ Ls(·)(Rn) with s(x) defined in
(2.9) and embeddings (2.10) with the inequalities (2.12) and (2.13) hold.

Indeed, the decay condition guarantees the validity of embeddings in
(2.10), see Section 3.3 in [2]. Consequently, by Lemma 2.3 the decay condi-
tion is sufficient for the inclusion (2.11).

2.2. On constants in the equivalence Lp(·)(Rn)∩Lp+(Rn) ∼= Lp∞(Rn)∩
Lp+(Rn). Let p ∈ P∞(Rn). The following equivalence

Lp(·)(Rn) ∩ Lp+(Rn) ∼= Lp∞(Rn) ∩ Lp+(Rn) (2.15)

and the embedding

Lp(·)(Rn) ↪→ Lp∞(Rn) + Lp−(Rn) (2.16)

are known to hold if 1 ∈ Ls(·)(Rn), where s(x) is defined in (2.9), see Lemma
3.3.12 in [2] (see also Lemma 4.5 in [3]). Recall that belongness of p to P∞ is
sufficient for 1 ∈ Ls(·)(Rn). In the following lemma we specify the constants
for the operators of embedding in the statements (2.15) and (2.16).

Lemma 2.5. Let p ∈ P∞(Rn). Then the equivalence (2.15) is valid in
the form

‖f‖Lp∞∩Lp+ ≤ 2
2

p− ‖1‖p̃1(·) ‖f‖Lp(·)∩Lp+ , (2.17)

‖f‖Lp(·)∩Lp+ ≤ 2
1

p−+ 1
p∞ ‖1‖p̃2(·) ‖f‖Lp∞∩Lp+ (2.18)

and the embedding (2.16) holds in the form

‖f‖Lp∞+Lp− ≤ 21+ 1
p− ‖1‖p̃1(·) ‖f‖p(·) (2.19)

with 21+ 1
p− replaced by 2

1
p− in the case p− = p∞.

Proof. We first observe that the following inequalities are derived from
Lemma 2.2:

p∞ ≤ M∞(x) ≤ p+ =⇒ ‖f‖M∞(·) ≤ 2
1

p∞ max
{‖f‖p+ , ‖f‖p∞

}
, (2.20)

p(x) ≤ M∞(x) ≤ p+ =⇒ ‖f‖M∞(·)≤2
1

p− max
{‖f‖p+ , ‖f‖p(·)

}
, (2.21)

m∞(x)≤p∞≤M∞(x) =⇒ ‖f‖p∞≤2
1

p− max
{‖f‖m∞(·), ‖f‖M∞(·)

}
, (2.22)

m∞(x)≤p(·)≤M∞(x) =⇒ ‖f‖p(·)≤2
1

p− max
{‖f‖m∞(·), ‖f‖M∞(·)

}
. (2.23)

Then the estimate (2.17) is obtained as follows:

max
{‖f‖p∞ , ‖f‖p+

} ≤ 2
1

p− max
{‖f‖m∞(·), ‖f‖M∞(·), ‖f‖p+

}
by (2.22)

≤ 2
2

p− max
{‖1‖p̃1(·)‖f‖p(·), ‖f‖p(·), ‖f‖p+} by (2.12) and (2.21)

≤ 2
2

p− ‖1‖p̃1(·) ‖f‖Lp(·)∩Lp+
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with ‖1‖p̃1(·) > 1 taken into account. Similarly (2.18) is obtained:

max
{‖f‖p(·), ‖f‖p+

}≤2
1

p− ‖1‖p̃2(·) max
{‖f‖M∞(·), ‖f‖p+

}
by (2.13)

≤2
1

p−+ 1
p∞ ‖1‖Lp̃2(·) max

{‖f‖p∞ , ‖f‖p+

}
by (2.20).

Finally,

‖f‖Lp∞+Lp− ≤ 2‖f‖m∞(·) by (2.7)

≤ 21+ 1
p− ‖1‖Lp̃1(·) ‖f‖p(·) by (2.12),

which proves (2.19).

In the case p− = p∞, the factor 21+ 1
p− in the last inequality may be

replaced by 2
1

p− , since m∞(x) ≡ p∞ in this case, so that we just have
‖f‖Lp∞+Lp− = ‖f‖m∞(·). ¤
2.3. Estimation of the norms ‖1‖Lr(·)(Rn) via the decay constant.
Let the variable exponent r(x) be given by one of the relations

1
r(x)

= max
{

0,
1

p(x)
− 1

p∞

}
,

1
r(x)

= max
{

0,
1

p∞
− 1

p(x)

}
,

1
r(x)

=
∣∣∣∣

1
p∞

− 1
p(x)

∣∣∣∣ .

(2.24)

By m0 = m0(n) ∈ (n,∞) we denote the unique root of the equation

(t− 1)(t− 2) · · · (t− n)et = |Sn−1|(n− 1)! en. (2.25)

Remark 2.6. In the one-dimensional case n = 1 one has m0 = 1 + δ,
where δ > 0 is the root of the equation tet = 2, i.e. m0 = W (2), where W
is the Lambert special function. Note that 1, 693 ≈ 1 + ln 2 < m0 < 2 in
this case.

Lemma 2.7. Let p ∈ P(Rn) satisfy the condition (2.8) and r(x) defined
by one of the relations in (2.24). Then

‖1‖Lr(·)(Rn) ≤ em0Ap . (2.26)

Proof. As observed in the proof of Proposition 4.1.8 in [2], under the con-
dition (2.8) for every m > 0 there holds the estimate γr(x) ≤ 1

(e+|x|)m with
γ ≤ e−mAp . Under the choice m > n and λ = emAp we then have

∫

Rn

(
1
λ

)r(x)

dx ≤
∫

Rn

dx

(e + |x|)m
=: Cm.

Direct calculation gives Cm = |Sn−1|(n−1)!en−m Γ(m−n)
Γ(m) = |Sn−1|(n−1)!en−m

(m−1)(m−2)···(m−n) .

With the choice m = m0 we have Cm0 = 1 so that
∫
Rn

(
1
λ

)r(x) ≤ 1 with

λ = em0Ap , which proves (2.26). ¤
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3. Estimation of the Norm of Convolution Operators in
Variable Exponent Lebesgue Spaces

Let
Kf(x) : =

∫

Rn

k(x− y)f(y) dy (3.1)

be a convolution operator. Theorem 3.1 below is a specification of Theorem
4.6 from [3] with respect to the estimation of the norm of the operator K.

The constant exponents r0 ≥ 1 and s0 ≥ 1, used in Theorem 3.1 are
defined by

1
r0

= 1− 1
p∞

+
1

q(∞)
,

1
s0

= 1− 1
p−

+
1
q+

, r0 ≤ s0. (3.2)

We also use the notation
1

p̃1(x)
:= max

{
0,

1
p(∞)

− 1
p(x)

}
,

1
q̃2(x)

:= max
{

0,
1

q(x)
− 1

q(∞)

}
. (3.3)

Theorem 3.1. Let p, q ∈ P∞(Rn) and q(∞) ≥ p(∞). If

k ∈ Lr0(Rn) ∩ Ls0(Rn), (3.4)

then the convolution operator K is bounded from Lp(·)(Rn) to Lq(·)(Rn) ∩
Lq+(Rn) and

‖Kf‖Lq(·)∩Lq+ ≤ κ(k; p, q) ‖f‖Lp(·) (3.5)
with

κ(k; p, q) = 21+ 2
p−+ 1

p∞ ‖1‖Lq̃2(·)‖1‖Lp̃1(·) max {‖k‖Lr0 , ‖k‖Ls0} ≤ (3.6)

≤ 21+ 2
p−+ 1

p∞ em0(Ap+Aq) max {‖k‖Lr0 , ‖k‖Ls0} , (3.7)

where m0 = m0(n) is defined by (2.25) and 21+ 2
p−+ 1

p∞ may be replaced by

2
2

p−+ 1
p∞ in the case p− = p∞.

Proof. Besides (3.2), define
1
r1

= 1− 1
p−

+
1

q(∞)
,

1
s1

= 1− 1
p(∞)

+
1
q+

.

Then
1 ≤ r0 ≤ min{r1, s1} ≤ max{r1, s1} ≤ s0 ≤ ∞. (3.8)

By classical Young’s inequality for the convolution operator K, we have

‖Kf‖q+ ≤ ‖k‖s0‖f‖p− , ‖Kf‖q(∞) ≤ ‖k‖r1‖f‖p− , (3.9)

and

‖Kf‖q+ ≤ ‖k‖s1‖f‖p(∞), ‖Kf‖q(∞) ≤ ‖k‖r0‖f‖p(∞). (3.10)

Therefore,
‖Kf‖q+ ≤ ‖k‖Ls0∩Ls1 ‖f‖Lp−+Lp(∞) (3.11)
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and

‖Kf‖q(∞) ≤ ‖k‖Lr0∩Lr1 ‖f‖Lp−+Lp(∞) . (3.12)

Consequently,

‖Kf‖Lq+∩Lq(∞) ≤ B‖f‖Lp−+Lp(∞) (3.13)

with

B := max {‖k‖Ls0 , ‖k‖Ls1 , ‖k‖Lr0 , ‖k‖Lr1 }=max {‖k‖Lr0 , ‖k‖Ls0} , (3.14)

where the last equality in (3.14) is a consequence of the continuous em-
beddings Lr0 ∩ Ls0 ↪→ Lr1 ∩ Ls0 , Lr0 ∩ Ls0 ↪→ Lr0 ∩ Ls1 with the norm of
the embedding operator equal to 1. More precisely, ‖k‖r1 ≤ ‖k‖t

r0
‖k‖1−t

s0
≤

‖k‖Lr0∩Ls0 , where t = r0(s0−r1)
r1(s0−r1)

∈ (0, 1), and then ‖k‖Lr1∩Ls0 ≤ ‖k‖Lr0∩Ls0 ;
similarly, ‖k‖Lr0∩Ls1 ≤ ‖k‖Lr0∩Ls0 . Therefore, ‖Kf‖Lq+∩Lq(∞) ≤
21+ 1

p− B‖1‖Lp̃1(·)‖f‖Lp(·) by (2.19). Then by (2.18),

‖Kf‖Lq(·) ≤ 21+ 2
p−+ 1

p∞ B ‖1‖Lp̃2(·) ‖1‖Lp̃1(·) ‖f‖Lp(·) , (3.15)

which proves (3.5)-(3.6). The line in (3.7) follows from Lemma 2.7. ¤

4. Estimation of the Constant in the Variable Exponent
Hardy Inequality

4.1. On norms of isomorphism between the spaces Lp(·)(R+) and
Lp∗(·)(R). As is well known, the exponential change of variables x =
e−

t
p f(e−t), isometrically maps the space Lp(R) onto Lp(R+) and reduces

the Hardy operators on R+ to convolution operators on R covered by Young
theorem (this approach works well in general for integral operators on R+

with a homogeneous kernel, which goes back to G.Hardy [4], see also details
in [10], Subsection 5.1). We will now deal with the mapping

(Wpf)(t) = e−
t

p(0) f(e−t) , t ∈ R. (4.1)

By P0,∞ = P0,∞(R+) we denote the set of all measurable bounded func-
tions p(x) : R+ → R+ t with inf

x∈R+
p(x) ≥ 1, which satisfy the conditions:

i) 0 ≤ p− ≤ p(x) ≤ p+ < ∞, x ∈ R+,
ii) there exist p∞ and p0 in (0,∞) such that

sup
x∈R+

∣∣∣∣
1

p(x)
− 1

p∞

∣∣∣∣ ln (e + x) ≤ A∞p , (4.2)

sup
0<x≤ 1

e

∣∣∣∣
1

p(x)
− 1

p0

∣∣∣∣ ln
1
x
≤ A0

p (4.3)
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(then from (4.17)-(4.3) it also follows that p0 ≥ 1 and p∞ ≥ 1). It can be
easily checked that (4.17)-(4.3) implies that also

sup
x∈R+

∣∣∣∣
(

1
p(x)

− 1
p∞

)
ln x

∣∣∣∣ ≤ Ap, Ap = max{A∞p , A0
p}. (4.4)

We denote
p∗(t) = p

(
e−t

)
, t ∈ R.

Note that p0 = p∞ ⇐⇒ p∗(−∞) = p∗(+∞) and (4.18) is equivalent to
∣∣∣∣

1
p∗(t)

− 1
p∞

∣∣∣∣ ≤
Ap

|t| , t ∈ R. (4.5)

Note also that from (4.19) it follows that
∣∣∣∣

1
p∗(t)

− 1
p∞

∣∣∣∣ ≤
Ap

e ln(e + |t|) , t ∈ R. (4.6)

Lemma 4.1. Let p ∈ P0,∞ and p0 = p∞. Then the operator Wp maps
isomorphically the space Lp(·)(R+) onto the space Lp∗(·)(R) and

e−Ap ≤ ‖Wp‖Lp∗(·)(R+)→Lp(·)(R) ≤ eAp (4.7)

and
e−Ap ≤ ‖W−1

p ‖Lp(·)(R)→Lp∗(·)(R+) ≤ eAp , (4.8)

where Ap = max{A0
p, A

∞
p }.

Proof. We have
∫

R

∣∣∣∣
Wpf(t)

λ

∣∣∣∣
p∗(t)

dt =
∫

R

∣∣∣∣∣
e−

t
p(0) f (e−t)

λ

∣∣∣∣∣

p∗(t)

dt =

=
∫

R+

∣∣∣∣
f(x)

λx
1

p(x)− 1
p(0)

∣∣∣∣
p(x)

dx. (4.9)

From (4.18) it follows that

e−A ≤ x
1

p(x)− 1
p(0) ≤ eA. (4.10)

Hence
∫

R+

∣∣∣∣
f(x)

‖Wpf‖p∗eA

∣∣∣∣
p(x)

dx ≤ 1 =
∫

R

∣∣∣∣
Wpf(t)
‖Wpf‖p∗

∣∣∣∣
p∗(t)

dt ≤

≤
∫

R+

∣∣∣∣
f(x)

‖Wpf‖p∗e−A

∣∣∣∣
p(x)

dx, (4.11)

which yields (4.21). Inequalities (4.8) are consequences of (4.21).
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The possibility to replace 21+ 2
p−+ 1

p∞ by 2
2

p−+ 1
p∞ is provided by Lem-

ma 2.5. ¤

4.2. Reduction of Hardy inequalities to convolution inequalities.
Let first µ ≡ 0. In the case where α and β are constant, the Hardy operators

Hαf(x) = xα−1

x∫

0

f(y)
yα

dy and Hβf(x) = xβ

∞∫

x

ϕ(y) dy

yβ+1
(4.12)

have the kernels, homogeneous of degree −1:

kα(x, y) =
1
x

(
x

y

)α

θ+(x−y) and kβ(x, y) =
1
y

(
x

y

)β

θ+(y−x), (4.13)

respectively, where θ+(x) = 1
2 (1 + sign x). It is known that an integral

operators Kϕ(x) =
∫∞
0

k(x, y)ϕ(y)dy on R1
+ with such a kernel may be

transformed to a convolution operator on R1, via the exponential change of
variables, see [4]; [10], p. 51, and in the case of constant p, the transforma-
tion

(Wpf)(t) = e−
t
p f(e−t) , −∞ < t < ∞ (4.14)

realizes an isometry of Lp(R1
+) onto Lp(R1) : ‖Wpf‖Lp(R1) = ‖f‖Lp(R1

+),
and

WpKW−1
p = H, (4.15)

where Hϕ =
∫
R1

h(t−τ)ϕ(τ)dτ , h(t) = e
t

p′ k(1, et), t ∈ R1 and ‖h‖L1(Rn) =

∞∫
0

y−
1
p |k(1, y)|dy.

In the case of variable exponent p(x) we will use this idea of reducing to
convolutions, taking the mapping Wp in the form

(Wpf)(t) = e−
t

p(0) f(e−t) , t ∈ R1. (4.16)

To be definite with the constants, we adopt the notation

A∞p : = sup
x∈R1

+

∣∣∣∣
1

p(x)
− 1

p∞

∣∣∣∣ ln (e + x),

A0
p : = sup

0<x≤ 1
e

∣∣∣∣
1

p(x)
− 1

p0

∣∣∣∣ ln
1
x

.

(4.17)

It can be easily checked that (4.17) implies that also

sup
x∈R1

+

∣∣∣∣
(

1
p(x)

− 1
p∞

)
ln x

∣∣∣∣ ≤ max{A∞p , A0
p}. (4.18)

We denote
p∗(t) = p

(
e−t

)
, t ∈ R1.
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Note that p0 = p∞ ⇐⇒ p∗(−∞) = p∗(+∞) and (4.18) is equivalent to∣∣∣∣
1

p∗(t)
− 1

p∞

∣∣∣∣ ≤
1
|t| max{A∞p , A0

p}, t ∈ R1. (4.19)

Note also that from (4.19) it follows that
∣∣∣∣

1
p∗(t)

− 1
p∞

∣∣∣∣ ≤
max{A∞p , A0

p}
e ln(e + |t|) , t ∈ R1. (4.20)

Lemma 4.2. Let p ∈ P0,∞ and p0 = p∞. Then the operator Wp maps
isomorphically the space Lp(·)(R1

+) onto the space Lp∗(·)(R1) and

e−Ap ≤ ‖Wp‖Lp∗(·)(R1
+)→Lp(·)(R1) ≤ eAp , (4.21)

where Ap = max{A0
p, A

∞
p }.

Proof. We have
∫

R1

∣∣∣∣
Wpf(t)

λ

∣∣∣∣
p∗(t)

dt =
∫

R1

∣∣∣∣∣
e−

t
p(0) f (e−t)

λ

∣∣∣∣∣

p∗(t)

dt =

=
∫

R1
+

∣∣∣∣
f(x)

λx
1

p(x)− 1
p(0)

∣∣∣∣
p(x)

dx. (4.22)

From (4.18) it follows that e−A ≤ x
1

p(x)− 1
p(0) ≤ eA. Hence

∫

R1
+

∣∣∣∣
f(x)

‖Wpf‖p∗eA

∣∣∣∣
p(x)

dx ≤ 1 =
∫

R1

∣∣∣∣
Wpf(t)
‖Wpf‖p∗

∣∣∣∣
p∗(t)

dt ≤

≤
∫

R1
+

∣∣∣∣
f(x)

‖Wpf‖p∗e−A

∣∣∣∣
p(x)

dx (4.23)

which yields (4.21). ¤

Lemma 4.3. For the Hardy operators Hα,µ and Hβ,µ with constant α, β
and µ the following relations are valid

(WqH
α,µW−1

p )ψ(t) =
∫

R1

h−(t− τ)ψ(τ)dτ (4.24)

and
(WqHβ,µW−1

p )ψ(t) =
∫

R1

h+(t− τ)ψ(τ)dτ, (4.25)

where

h−(t) = e

(
1

p′(0)−α
)

t
θ−(t) and h+(t) = e−( 1

p(0)+β)tθ+(t), (4.26)
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q is defined by the condition 1
q(0) = 1

p(0) − µ and θ−(t) = 1− θ+(t).

Proof. The proof is a matter of direct verification. ¤

In view of Lemmas 4.3 and 4.2 and Theorem 3.1, we are now able to
prove the main result of this Section for Hardy operators. This will be done
in the next subsection.

4.3. Variable exponent Hardy inequalities. By M0,∞(R1
+) we denote

a class of functions g ∈ L∞(R1
+) such that there exist real numbers g0 and

g∞ such that the following decay conditins

|g(x)− g0| ≤ A

|ln x| , 0 < x ≤ 1
2

and |g(x)− g∞| ≤ A

ln x
, x ≥ 2

hold. We also write g0 = g(0), g∞ = g(∞) in this case. By P0,∞(R1
+) we

denote the subclass of functions in M0,∞(R1
+) with values in [1,∞).

The following theorem was in main proved in [3]. We prove it here under
more general assumptions.

Theorem 4.4. Let α, β, µ ∈M0,∞(R1
+), p ∈ P0,∞(R1

+) and p− > 1 and

0 ≤ µ(0) <
1

p(0)
and 0 ≤ µ(∞) <

1
p(∞)

.

Let also q(x) be any function in P0,∞ such that

1
q(0)

=
1

p(0)
− µ(0) and

1
q(∞)

=
1

p(∞)
− µ(∞). (4.27)

Then the Hardy-type inequalities
∥∥∥∥∥xα(x)+µ(x)−1

x∫

0

f(y) dy

yα(y)

∥∥∥∥∥
Lq(·)(R1

+)

≤ C ‖f‖Lp(·)(R1
+) (4.28)

and ∥∥∥∥∥xβ(x)+µ(x)

∞∫

x

f(y) dy

yβ(y)+1

∥∥∥∥∥
Lq(·)(R1

+)

≤ C‖f‖Lp(·)(R1
+), (4.29)

are valid, if and only if α and β satisfy respectively the conditions

α(0) <
1

p′(0)
, α(∞) <

1
p′(∞)

, (4.30)

β(0) > − 1
p(0)

, β(∞) > − 1
p(∞)

. (4.31)

Proof. Sufficiency.
10. The case where p(0) = p(∞), µ(0) = µ(∞), α(0) − α(∞) and

β(0) = β(∞).
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In this case, by the decay condition we have the equivalence

xµ(x) ∼ xµ(0)xα(x) ∼ xα(0), xβ(x) ∼ xβ(0),

on the whole half-axis R1
+, so that the Hardy operators Hα,µ, Hβ,µ with

variable exponents are equivalent to the Hardy operators with constant
exponents µ = µ(0), α = α(0), β = β(0), respectively. To the latter we can
apply Lemmas 4.2 and 4.3. We have

‖Wpf‖Lp∗(·)(R1)∼‖f‖Lp(·)(R1
+) and ‖W−1

q ψ‖Lq(·)(R1
+)∼‖ψ‖Lq∗(·)(R1), (4.32)

where p∗(t) = p(e−t), q∗(t) = q(e−t). Therefore, the Lp(·)(R1) → Lq(·)(R1)
boundedness of the operators Hα,µ and Hβ,µ follows from the Lp∗(·)(R1) →
Lq∗(·)(R1) boundedness of the convolution operators on R1 with the kernels
h+(t) and h−(t), respectively.

Since 1
p′(0) −α > 0 and 1

p(0) + β > 0, the convolutions h− ∗ψ and h+ ∗ψ

are bounded operators from Lp∗(·)(R1) to Lq∗(·)(R1) in view of Theorem
3.1. Consequently, the Hardy operators Hα,µ and Hβ,µ are bounded from
Lp(·)(R1

+) to Lq(·)(R1
+).

20. The general case.
Let 0 < δ < N < ∞ and χE(x) denote the characteristic function of a

set E ⊂ R1
+. We have

Hα,µf(x)=
(
χ[0,δ]+χ[δ,N ]+χ[N,∞)

)
Hα,µ

(
χ[0,δ] + χ[δ,N ]+χ[N,∞)

)
f(x)=

= χ[0,δ](x)
(
Hα,µχ[0,δ]f

)
(x) + χ[δ,∞)(x)

(
Hα,µχ[0,N ]f

)
(x)+

+χ[N,∞)(x)
(
Hα,µχ[N,∞)f

)
(x) =: V1(x)+V2(x)+V3(x). (4.33)

It suffices to estimate separately the modulars Iq(Vk), k = 1, 2, 3, sup-
posing that ‖f‖Lp(·)(R1

+) ≤ 1. For Iq(V1) we obtain

Iq(V1) =

δ∫

0

∣∣∣∣∣

x∫

0

xα(x)−1

yβ(y)
f(y)dy

∣∣∣∣∣

q(x)

dx ≤

≤
∞∫

0

( x∫

0

xα1(x)+µ1(x)−1

yβ1(y)
|f(y)|dy

)q1(x)

dx = Iq1(H
α1,µ1f), (4.34)

where α1(x), µ1(x) and p1(x) are arbitrarily chosen extensions of the func-
tions α(x), µ(x) and p(x) from [0, δ] to the whole half-axis with the preser-
vation of the classes M0,∞(R1

+) and P0,∞(R1
+) and such that

α1(∞) = α(0), µ1(∞) = µ(0) and p1(∞) = µ(0).

(The possibility of such an extension is in fact obvious, and the direct
constriction may be given: p1(x) = ω(x) p(x) + (1 − ω(x)) p(∞), where
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ω ∈ C∞([0,∞)) has compact support and ω(x) = 1 for x ∈ [0, δ] and
similarly for α1(x) and µ1(x)). From (4.34) we obtain

Iq(V1) ≤ C < ∞ whenever ‖f‖Lp(·)(R1
+) ≤ 1

according to Part 10 of the proof.
The estimation of Iq(V3) is quite similar to that of Iq(V1) with the only

difference that the corresponding extension of p(x) must be made from
[N,∞) to R1

+.
Finally, the estimation of the term V2(x) is evident:

Iq(V2) ≤
∞∫

δ

∣∣∣∣∣x
α(∞)−1

N∫

0

f(y)
yα(0)

dy

∣∣∣∣∣

p(x)

dx, (4.35)

where it suffices to apply the Hölder inequality in Lp(·)(R1
+) when we inte-

grate in y with α < 1
p′(0) taken into account, and make use of the fact that

α(∞) < 1
p′(∞) when we integrate in x.

Similarly the case of the operator Hβ is considered (or alternatively,
one can use the duality arguments, but the latter should be modified by
considering separately the spaces on [0, δ] and [N,∞), because we admit
p(x) = 1 in between).

Necessity.

Take f0(x) =
χ[0, 1

2 ]
(x)

x
1

p(0) ln 1
x

∈ Lp(·)(R1
+) for which the existence of the integral

Hα,µf0(x) = xα(x)+µ(x)−1
x∫
0

dy

y
α(x)+ 1

p(0) ln 1
y

dy, 0 < x < 1
2 implies the condi-

tion α(0) < 1
p′(0) . For the second choose f∞(x) = χ[2,∞)(x)

xλ ∈ Lp(·)(R1
+),

λ > max(1, 1− α). For x ≥ 3 we have

Hα,µf∞(x) ∼ xα(∞)+µ(∞)−1

x∫

2

dy

yα(∞)−λ
≥

≥ xα(∞)+µ(∞)−1

3∫

2

dy

yα+λ
= cxα(∞)+µ(∞)−1

which belongs to Lp(·)(R1
+) only if α < 1

p′(∞) .

Similarly the necessity of the conditions (4.31) is proved. ¤

4.4. Estimation of the constants in the Hardy inequalities. Observe,
that estimation of constants arising in the boundedness statements in the
variable exponent spaces, is not an easy task (it is not always easy even in
the case of constant exponents). For variable exponents, they may depend
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on p(x), for instance, via the constants p−, p+ and the constants from the
log-condition and decay conditions.

Basing on the calculations made in the prededing sections, we give some
estimation of the constants in the Hardy inequalities (4.28)-(4.29) in the
cases, where

i) α, β and µ are constants,
ii) p(0) = p(∞) and q(0) = q(∞).

Note that in the case where all the exponents p, α, β and µ are constant,
the Hardy inequalities (4.28)-(4.29) hold at the least with the constant

C =
(

1− µ

ν

)1−µ

, (4.36)

where ν = 1
p′ − α for the operator Hα,µ and ν = 1

p + β for the operator
Hβ,µ (use the relations (4.24)–(4.25) and apply Young p → q-theorem for
convolutions; see [14] for the best constant in (4.28)).

In the following theorem we use the notation Ap = max{A∞p , A0
p} and

similar one for Aq, and denote δ = 1
p−
− 1

q+
. Recall that the constant W (2)

was defined in Remark 2.6, 1 + ln 2 < W (2) < 2. Compare formulas (4.5),
(4.39) with (4.36).

Theorem 4.5. Let p, q ∈ P0,∞, p0 = p∞, q0 = q∞, 0 ≤ µ < 1
p∞

and
1
q0

= 1
p0
−µ. Under the conditions α < 1

p′∞
, β > − 1

p∞
, the Hardy inequalities

(4.28) and (4.29) hold with the constant

C = 21+ 2
p−+ 1

p∞ e[1+W (2)](Ap+Aq)λ(p, q), (4.37)

where

λ(p, q) := max

{(
1− µ
1

p′∞
− α

)1−µ

,

(
1− δ
1

p′+
− α

)1−δ
}
≤

≤ 1(
1

p′∞
− α

)1−µ (4.38)

for the operator Hα,µ and

λ(p, q) := max

{(
1− µ
1

p∞
+ β

)1−µ

,

(
1− δ
1

p+
+ β

)1−δ
}
≤

≤ max

{
1,

1
1

p∞
+ β

}1−µ

(4.39)

for the operator Hβ.µ; the factor 21+ 2
p−+ 1

p∞ in (4.37) may be replaced by

2
2

p−+ 1
p∞ in the case p− = p0 = p∞.
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Proof. The estimates will follow from the relations (4.24)–(4.25) and Theo-
rem 3.1 for convolutions. From (4.24) by Lemma 4.2 we have
‖Hα,µ‖Lq(·)(R+) ≤ eAq‖h−∗Wpf‖Lq∗(·)(R), where q∗(t) = q(e−t). Subsequen-
tly, by Theorem 3.1 and Lemma 4.2 again, we obtain

‖Hα,µ‖Lq(·)(R+) ≤ eAqκ(h−; p∗, q∗) ‖Wpf‖Lp∗(·)(R) ≤
≤ eAp+Aqκ(h−; p∗, q∗) ‖f‖Lp(·)(R+). (4.40)

Similarly,

‖Hβ,µ‖Lq(·)(R+) ≤ eAp+Aqκ(h+; p∗, q∗) ‖f‖Lp(·)(R+). (4.41)

To estimate the constants κ(h±; p∗, q∗) corresponding to the kernels h±,
we use (3.6) and obtain

κ(h±; p∗, q∗) = 2
1+ 2

p∗−
+ 1

p∗∞ ‖1‖
Lq̃∗2 (·) ‖1‖Lp̃∗1(·) max

{‖h±‖Lr∗0 , ‖h±‖Ls∗0

}
,

with
1

p̃∗1(t)
:= max

{
0,

1
p∗∞

− 1
p∗(t)

}
,

1
q̃∗2(x)

:= max
{

0,
1

q∗(t)
− 1

q∗∞

}
(4.42)

and
1
r∗0

= 1− 1
p∗∞

+
1

q∗∞
= 1− 1

p∞
+

1
q∞

= 1− µ, (4.43)

1
s∗0

= 1− 1
p∗−

+
1
q∗+

= 1− 1
p−

+
1
q+

= 1− δ. (4.44)

From Lemma 2.7, Remark 2.6 and (4.20) we have ‖1‖
Lq̃∗2 (·)‖1‖Lp̃∗1(·) ≤

eW (2)(Ap+Aq), so that

κ(h±; p∗, q∗) ≤ 2
1+ 2

p∗−
+ 1

p∗∞ eW (2)(Ap+Aq) max
{‖h±‖Lr∗0 , ‖h±‖Ls∗0

}
.

Then from (4.40) and (4.41) we arrive at (4.37) with λ(p, q) =
max

{‖h±‖Lr∗0 , ‖h±‖Ls∗0

}
. It remains to calculate the corresponding norms

‖h±‖. For constant exponents σ ∈ [1,∞) we have

‖h±‖Lσ(R) =
1

(
σγ±p

) 1
σ

:= g±(σ),

where γ−p = 1
p′∞

− α and γ+
p = 1

p∞
+ β and then

λ1(p, q) = max{g−(r0), g−(s0)}, λ2(p, q) = max{g+(r0), g+(s0)},
which gives equalities in (4.5)–(4.39). To justify the inequalities in (4.5)–

(4.39), observe that the function g±(σ) =
(
σγ±p

)− 1
σ , σ ∈ (0,∞), has mini-

mum at σ0 = e
γ±p

equal to e−
γ±p
e , while g±(1) = 1

γ±p
and g±(∞) = 1 (Note
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that the point σ0 may lie outside the interval [1,∞) in the case of h+). Con-
sequently, since 1

γ−p
> 1, we have λ1(p, q) ≤ 1

γ−p
, λ2(p, q) ≤ max

{
1, 1

γ+
p

}
.

Then finally

eAp+Aqκ(h−; p∗, q∗) ≤ 21+ 2
p−+ 1

p∞

1
p′∞

− α
e[1+W (2)](Ap+Aq),

eAp+Aqκ(h+; p∗, q∗) ≤ 21+ 2
p−+ 1

p∞

min{1, 1
p∞

+ β} e[1+W (2)](Ap+Aq). ¤

Remark 4.6. Note that the exponent q(x) in the above theorem may
have values for 0 < x < ∞ absolutely independent of those of p(x), the only
relation between these exponents is imposed at the end points x = 0 and
x = ∞ by the condition 1

q0
= 1

p0
− µ and the assumptions p0 = p∞, q0 =

q∞. In the case we would wish to use a more restrictive “standard” choice
1

q(x) = 1
p(x) − µ for all x ∈ [1,∞], then Aq = Ap, which slightly “simplifies”

the above estimation of the norm, but on the other hand, this choice would
force us to impose an assumption µ < 1

p+
on µ, more restrictive than the

condition (4.27).

4.5. Knopp-Carleman inequalities in the variable exponent set-
ting. In this subsection we apply the known dilation procedure to derive
the Knopp-Carleman integral inequality with variable exponents from the
Hardy inequalities. To apply this procedure on the base of the estimation
of the constants in the Hardy inequalities obtained in the previous subsec-
tionm we have to suppose that p− = p(0) = p(∞). Recall that we do not
suppose that the local log-condition holds.

Theorem 4.7. Let p, q ∈ P0,∞, p0 = p∞ = p−(:= inf p(x)). Then
∥∥∥∥∥ exp

(
(1− α)xα−1

x∫

0

ln f(y)
yα

dy

)∥∥∥∥∥
Lp(·)(R+)

≤

≤ Cpe
1

(1−α)p∞ ‖f‖Lp(·)(R+) (4.45)

for all α < 1
p′∞

and
∥∥∥∥∥ exp

(
βxβ

∞∫

x

ln f(y)
yβ+1

dy

)∥∥∥∥∥
Lp(·)(R+)

≤

≤ Cpe
− 1

βp∞ ‖f‖Lp(·)(R+) (4.46)

for all 0 < β < B(δ) − 1
p∞

, where B(δ) = (1 − δ)
δ−1

δ , δ = 1
p−
− 1

p+
and

Cp = 2
3

p∞ e2[1+W (2)]Ap .
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Note that the B(δ) appearing in the bound for the exponent β is a de-
creasing function of δ ∈ (0, 1), with B(0) = ∞ and B(1) = 1, so that this
bound goes to infinity when p(x) becomes constant.

Proof. We rewrite (4.28) with the constant C = C(p) given in (4.37) for the
case µ = 0 and p(x) ≡ q(x) in the form

∥∥∥∥∥(1− α)xα−1

x∫

0

f(y) dy

yα

∥∥∥∥∥
Lp(·)(R+)

≤ C(p)(1− α)‖f‖Lp(·)(R+). (4.47)

We may assume that f(x) ≥ 0 and replace f(x) by f(x)λ, and also p(x)
by p(x)

λ , where λ is an arbitrary positive number, and make use of the
relation

‖fλ‖p(·) = ‖f‖λ
λp(·). (4.48)

We get
∥∥∥∥∥

(
(1− α)xα−1

x∫

0

f(y)λ dy

yα

) 1
λ
∥∥∥∥∥

Lp(·)(R+)

≤

≤
[
(1− α)C1

( p

λ

)] 1
λ ‖f‖Lp(·)(R1

+). (4.49)

Then
∥∥∥∥∥

(
(1− α)xα−1

x∫

0

f(y)λ dy

yα

) 1
λ
∥∥∥∥∥

Lp(·)(R+)

≤

≤ 2
3

p∞ e
2[1+W (2)] 1

λ A p
λ

(
1− α

1− α− λ
p∞

) 1
λ

‖f‖Lp(·)(R1
+) (4.50)

by Theorem 4.5.
Denote

gλ(x) = (1− α)xα−1

x∫

0

f(y)λ dy

yα

so that lim
λ→0

gλ(x) = 1. We have (gλ(x))
1
λ = e

ln gλ(x)
λ , and therefore there

exists the almost everywhere limit

lim
λ→0

(gλ(x))
1
λ = elimλ→0

d
dλ ln gλ(x) = exp

(
(1− α)xα−1

x∫

0

ln f(y)
yα

dy

)
.

By Fatou theorem (see Theorem 2.3.17 in [2] on application of Fatou the-
orem with respect to variable exponent norm) we may pass to the limit in
(4.50) as λ → 0. Taking into account that 1

λA p
λ

= Ap, we obtain (4.7).
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The inequality (4.7) is proved following the same arguments. ¤

From (4.7) we obtain also the following

Corollary 4.8. Under the assumptions of Theorem 4.7 on p(x)

sup
0<β<1

∥∥∥∥∥ exp

(
1

βp∞
− βxβ

∞∫

x

ln 1
f(y)

yβ+1
dy

)∥∥∥∥∥
Lp(·)(R+)

≤ Cp‖f‖Lp(·)(R+).
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